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ABSTRACT 

This thesis addresses the problem of implementing secure virtual machine monitors 
(VMM) on the Intel Pentium architecture. A VMM allows multiple operating systems to 
run concurrently under virtual machines on a single workstation. High-assurance VMMs 
could allow complete isolation of, or data sharing between, virtual machines according to a 
security policy such as a mandatory secrecy policy. 

The Intel architecture was mapped to a set of hardware requirements for VMMs. It 
was found that the Intel architecture was not virtualizable. However, several techniques are 
presented that allow the Intel architecture to support a "virtual VMM." A commercial 
virtual VMM was studied and found to be unable to support secure VMMs. Therefore, a 
foundation upon which a secure VMM could be built for the Intel Pentium architecture is 
presented. 

A secure VMM for the Intel architecture offers several benefits. First, PC users 
could work in a more secure environment. Second, PC users could run familiar COTS 
operating systems and applications. Finally, secure VMMs could save the DoD millions of 
dollars by eliminating the need for separate systems when both high assurance, and COTS 
operating systems and applications are required. 
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I. INTRODUCTION 

A.   BACKGROUND 

Technological developments in the early 1970's brought about large multi-access, 

multi-programming, multi-processing computer systems. Multi-access allowed many 

users to access the same computer simultaneously. Multi-programming allowed multiple 

programs to be loaded into a computer's memory simultaneously. A scheduler in the 

system time-multiplexes the processor among the processes that are executing the 

programs. Finally, multi-processing allowed one computer to use many processors 

simultaneously. 

The characteristics listed above brought about a new age in computing. Most 

computer users no longer had to be in the computing facility to use the computer. 

However, this was not true for system programmers. System programmers require direct 

access to the resources of the computer system, which can not be provided through the 

computer's operating system. Therefore, not only did system programmers have to be in 

the computing facility to work, they had to make the system inaccessible to other users in 

order to do their work. To overcome this difficulty, virtual machine monitors were 

invented. A virtual machine monitor provides all computer system users the appearance 

of having direct access to the resources of a "bare" computer. 

A virtual machine monitor (VMM) is software for a computer system that creates 

efficient, isolated programming environments that are "duplicates" of the real machine 

environment. These "duplicates" are referred to as virtual machines. Goldberg defines a 

virtual machine (VM) as: "a hardware-software duplicate of a real existing computer 

system in which a statistically dominant subset of the virtual processor's instructions 

execute on the host processor in native mode" [Ref. 1]. A VMM mediates between the 

virtual machine(s) and the real resources of the computer system. CP-67 is an example of 

one of the earliest virtual machine monitors. 



In the past, some virtual machine monitors have been used to separate mandatory 

security classes. Examples of such usage can be seen in SDC's KVM-370 and the DEC 

VAX SVS. If a secure VMM could be built for the Intel Pentium1 architecture, it would 

be very attractive because a single machine could be used to implement multi-level 

security and also run commercial-off-the-shelf operating systems and applications. The 

focus of this research is to determine whether a VMM written for the Intel Pentium 

architecture can provide this type of security and convenience. 

B. GOALS OF THE THESIS 

The first goal of this thesis is to determine whether any type of virtual machine 

monitor can be built on the Intel Pentium architecture. Types of virtual machine monitors 

include Type I, Type II, and Hybrid (all of which are described later in this thesis). If a 

VMM can be constructed for the Intel Pentium architecture, I will determine whether the 

VMM can be secure. 

C. VIRTUAL MACHINE MONITORS 

1.        Benefits of Virtual Machine Monitors 
Virtual machine monitors have many benefits.   First, virtual machine monitors 

normally allow a system manager to configure the environment in which a virtual 

machine will run. Therefore, virtual machines can have configurations different from 

those of the real machine. This means that even though a real machine might have 32MB 

of memory, a virtual machine may be set to have 8 MB of memory. This situation would 

allow a developer to test the performance of his application on a machine with only 8 MB 

of memory without having to construct a real machine with only 8 MB of memory. 

Second, virtual machines allow many different operating systems to be run 

Throughout this paper, the term "Intel Pentium architecture" will refer to the architecture of the following 

processors which are all trademarks of the Intel Corporation: Intel Pentium, Intel Pentium Pro, Intel Pentium with 

MMX Technology, Intel Pentium II, and Intel Pentium EL 



concurrently on the same computer. Users can run any operating system and applications 

they choose as long as they are designed to run on the real processor architecture. This 

benefit makes application development for different operating systems much easier. 

Since several different operating systems can run on the same computer, a developer can 

test his application on many operating systems using the same computer. 

Third, virtual machines allow users to run untrusted applications in an isolated 

environment. For example, a program that is downloaded from the Internet could be 

tested in a virtual machine. If the program contained a virus, the virus would be isolated 

to that virtual machine. This protects the rest of the machine's applications and data. 

Fourth, virtual machines can be used to upgrade operating system software to a 

different version without losing the ability to run the older "legacy" operating system and 

its applications. The legacy operating system and its applications can run in a virtual 

machine exactly as they did previously on the real machine, while the new version of the 

operating system runs in a separate virtual machine. 

Finally, virtual machine monitors can be used to construct system software for 

scalable computers that have anywhere from 10 to 100 processors. These systems are 

being used more and more in the marketplace. However, the system software for these 

scalable machines has not reached the functionality and reliability that is expected in 

modern operating systems. Operating system developers must be blamed for this 

problem. They must make many modifications to an operating system to support scalable 

machines. 

Virtual machine monitors are a solution to this problem. Using a VMM, an 

additional software layer can be inserted between the hardware and multiple operating 

systems. This layer would allow multiple copies of an operating system to run on the 

same scalable computer. The VMM also allows these operating systems to share 

resources with each other. This solution has most of the features of an operating system 

that was custom-built for a scalable machine. However, the development costs and 

complexity of the virtual machine monitor are significantly lower than for a custom 

solution. A prototype of this solution, called Disco, was developed at Stanford University 



on the Stanford FLASH shared-memory multi-processor [Ref. 2]. Disco uses many 

different commercial operating systems to provide high-performance system software. 

The professors at Stanford who worked on the Disco prototype later formed VMware, 

Inc. Their product, called VMware2, is a VMM for the Intel Pentium architecture and is 

discussed in a portion of this thesis. 

2. Characteristics and Layers of a VMM 
A  VMM  has  three  characteristics  [Ref.   3].     First,  a VMM provides  an 

environment that is almost identical to the original machine. This means that any 

program that runs in a VM should run the same as if it had been run on the original 

machine. The exceptions to this rule are differences in system resource availability, 

timing dependencies, and attached I/O devices. If resource availability is different, such 

as reduced physical memory, the program will obviously not perform as well because the 

program will need to page or swap. Timing dependencies may lose their validity because 

a VMM may intervene and execute a different set of instructions when certain 

instructions are executed by a VM. These substitute instructions may take longer than 

expected to execute. Therefore, any assumptions about how long instructions will take to 

execute may be incorrect. Finally, if the VM is not configured to have a peripheral 

device that is attached to the real machine, such as a network card, it will not be able to 

access the peripheral device even though it is attached to the real machine. 

The second characteristic of a VMM is that it must be in control of real system 

resources. This means that no program running under a VMM can access any resource 

that is not explicitly allocated to it by the VMM. It also means that it is possible for the 

VMM to regain control of resources that it already allocated. 

Third, a VMM must be efficient. This means that a large percentage of the virtual 

processor's instructions must be executed by the machine's real processor, without VMM 

intervention. Instructions which can not be executed directly by the real processor are 

interpreted by the VMM. 

VMware and VMware's patent-pending Virtual Platform are trademarks of VMware, Inc. 



Some virtual machines exhibit the recursion property. This means that it is 

possible to run a VMM inside of a VM, producing a new level of virtual machines. The 

real machine is normally called Level 0. A VMM running on Level 0 is said to be Level 

1, etc. 

3.        Logical VMM Modules 
A VMM normally has three generic types of modules: dispatcher, allocator, and 

interpreter. A jump to the dispatcher is placed in every location to which the machine 

traps. The dispatcher then decides which of its modules to call when the machine traps. 

The second type of module is the allocator. If a VM tries to execute a privileged 

instruction that would change the resources of the VM's environment, the VM will trap to 

the VMM dispatcher. The dispatcher will handle the trap by invoking the allocator that 

performs the requested resource allocation according to VMM policy. There is only one 

allocator module in a VMM. However, the allocator is a large portion of the virtual 

machine monitor. It decides which system resources to provide to each VM, ensuring 

that two different VM's do not get the same resource. The final module type is an 

interpreter. Each privileged instruction will have an interpreter module that is called by 

the dispatcher to simulate the effect of the instruction that caused the trap. 

D.        THESIS ORGANIZATION 

The rest of this thesis is organized as follows: Chapter II contains a discussion of 

the three different types of VMMs and their hardware requirements. Chapter III is an 

analysis of the Intel architecture to determine if it can meet any of the VMM hardware 

requirements described in Chapter II. Chapter IV is a case study of a commercial product 

called VMware and how it relates to Intel Pentium virtualization. Chapter V determines 

whether or not a VMM designed for the Intel Pentium architecture can be secure. Finally, 

Chapter VI is a conclusion of this work and also addresses possible future research. 

This thesis has two appendices. Appendix A contains a brief summary of the Intel 

architecture and is recommended to readers who are not familiar with the Intel Pentium 

architecture.  Appendix B is a table of the results obtained from the analysis in Chapter 



III.  It is a list of all documented Intel Pentium instructions and whether or not they are 

virtualizable. 



II. TYPES OF VIRTUAL MACHINE MONITORS 

This chapter discusses each type of VMM including the Type I VMM, Type II 

VMM, and Hybrid VMM. It will also cover the architectural features that each type of 

VMM requires in order to be implemented. 

An operating system consists of instructions to be executed on a hardware 

processor. When an operating system is virtualized, some portion, ranging from none to 

all, of the instructions may be executed by underlying software. The amount of software 

and hardware execution of processor instructions determines if one has a complete 

software interpreter machine (CSIM), hybrid VM (HVM), VMM, or a real machine. 

Each of these different types of machines provides a normal machine environment, 

meaning that processor instructions can be executed in them. Thus, a VMM can host an 

operating system. However, they differ in the way that the machine environment actually 

executes the processor instructions. A real machine uses only direct execution, meaning 

that the processor executes every instruction. A CSIM uses only software interpretation, 

meaning that a software program emulates every processor instruction. Goldberg says 

that a VMM requires that a "statistically dominant subset" of the virtual processor's 

instructions be executed on the real processor [Ref. 1]. Although he does not give a 

specific percentage, it is easy to see that performance will be better if more instructions 

are executed directly by the processor. For example, when executed directly, the LGDT x 

instruction loads x into the global descriptor table register of the processor. However, 

when emulated by software, the instruction would first trap to a VMM. The VMM would 

then execute a MOV y, x instruction to store the value x in a special memory location y 

designated by the VMM. The special memory location, y, is necessary because the 

processor's global descriptor table register (GDTR) must hold the location of the global 

descriptor table of the VMM or host OS. A VMM can not allow a virtual machine to 

overwrite the real GDTR register. Finally, the VMM would have to return to the virtual 

machine to allow it to continue executing.  VMMs primarily use direct execution, with 



occasional traps to software. As a result, the performance of VMMs is better than CSIMs 

and HVMs. An HVM is a VMM that uses software interpretation on all privileged 

instructions. HVMs are possible on a larger class of systems than VMMs. 

The definition of a VMM does not specify how the VMM gains control of the 

machine to interpret instructions that cannot be directly executed on the processor. As a 

result, there are two different types of VMMs that can create a virtual machine 

environment. These types are referred as Type I and Type II in Goldberg's thesis. A 

Type I VMM runs on a bare machine, meaning that it is an operating system with 

virtualization mechanisms. It performs the scheduling and allocation of the system's 

resources. A Type II VMM runs as an application under an operating system. The 

operating system that controls the real hardware of the machine is called the "host OS." 

The host OS does not need or use any part of the virtualization environment. Every OS 

that is run in the virtual environment under the host OS is called a "guest OS." In a Type 

II VMM, the host operating system provides resource allocation and a standard execution 

environment to each guest OS. 

When executing in a virtual machine, some processor instructions can not be 

executed directly on the processor. These instructions would interfere with the state of 

the underlying VMM or host OS and are called sensitive instructions. The key to 

implementing a VMM is to prevent the direct execution of sensitive instructions. Some 

sensitive instructions in the Intel Pentium architecture are privileged, meaning that if they 

are not executed at CPL 0, they will cause a general protection exception. Normally, a 

VMM is executed in privileged mode and a VM is run in user mode. When sensitive 

instructions that are privileged are executed in a VM, they cause a trap to the VMM. If 

all sensitive instructions of a processor are privileged, the processor is considered to be 

"virtualizable." This is because all sensitive, privileged instructions will trap to the 

VMM because they are executing in user mode. After trapping, the VMM will execute 

code that will emulate the proper behavior of the privileged instruction for the virtual 

machine.     However, if sensitive, non-privileged instructions exist, they may interfere 



with the proper operation of the VM. This means that it may be necessary for the VMM 

to examine each instruction before execution to ensure that it is not a sensitive, non- 

privileged instruction. When a sensitive instruction is encountered, the virtual machine 

must be forced to trap to the VMM so that it can be handled properly. Examining every 

instruction before it is executed will cause considerable overhead. 

The most severe performance penalty comes when running a complete software 

interpreter machine (CSIM). A CSIM emulates every instruction of the real processor. It 

is not a virtual machine because it does not execute any of the instructions directly on the 

real processor. Figure 1 below illustrates the various types of machines based on the 

amount of hardware and software execution. 

In his thesis, Goldberg explores third generation hardware to determine which 

processors, if any, can run virtual machine monitors. Some of the key architectural 

features of third generation hardware are: two processor modes of operation, a method for 

non-privileged programs to call privileged system routines, a memory relocation or 

protection mechanism such as segmentation or paging, and asynchronous interrupts to 

allow the I/O system to communicate with CPU. Even though Goldberg's thesis was 

written over twenty-five years ago, all of these characteristics still apply to the Intel 

Pentium architecture. The Intel Pentium processor has four modes of operation, known 

as rings, or current privilege level (CPL), 0 through 3. Ring 0 is the most privileged level 

of operation. Operating systems operate in this ring. Ring 3 is the least privileged ring, 

where applications programs execute. The Intel architecture also has a method for non- 

privileged tasks to call privileged system routines—the call gate. Call gates allow 

transfer .of program control between privilege levels. The Intel architecture also uses both 

paging and segmentation to implement its protection mechanism. Finally, the Intel 

architecture uses both interrupts and exceptions to allow the I/O system to communicate 

with the CPU. The architecture has 16 predefined interrupts and exceptions and 224 

user-defined, or maskable, interrupts. 



After examining third generation hardware, Goldberg developed a list of 

requirements that a processor must meet in order to be virtualizable. He analyzed twelve 

different third generation processors and found that only five were virtualizable. 
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Figure 1. Hardware and Software Execution of Various Types of Machines. 

He concluded that most of the seven remaining processors were not virtualizable because 

they were not designed to be.   The following sections will analyze each type of VMM 

and the requirements that a processor must meet in order to support it. 
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A. TYPE I VMM 

A Type I VMM runs directly on the machine hardware. In other words, it is an 

operating system or kernel that has mechanisms to support virtual machines. A Type I 

VMM is illustrated in Figure 2. 

A Type I VMM must perform scheduling and resource allocation for all virtual 

machines in the system. This means that a Type I VMM may be much larger than Type 

II VMM because of the extra code needed to implement these features. Furthermore, a 

Type I VMM requires drivers for hardware peripherals. 

Goldberg develops a set of rules to determine if processor hardware is capable of 

supporting virtual machines and thus could be a host for a Type I VMM. His three 

requirements for virtualization are: 

1) The method of executing non-privileged instructions must be roughly 

equivalent in both privileged and user mode. For example, a processor can not use an 

additional bit in an instruction word or in the address portion of an instruction when in 

privileged mode. 

2) There must be a method such as a protection system or an address translation 

system to protect the real system and any other VMs from the active VM. 

VM1 VM2; VM3 .     , -VM4..V - - 

Apps Apps Apps: : >>( Apps 

Windows 98 Windows NT Other Intel OS Linux 

Type I VMM 

Hardware 

Figure 2. A Hypothetical Type I VMM Supporting Popular PC Operating Systems. 
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3) There must be a way to automatically signal the VMM when a VM attempts to 

execute a sensitive instruction. It must also be possible for the VMM to simulate the 

effect of the instruction. Sensitive instructions include: 

A) Instructions that attempt to change or reference the mode of the VM or the 

state of the machine. 

B) Instructions that read or change sensitive registers and/or memory locations 

such as a clock register and interrupt registers. 

C) Instructions that reference the storage protection system, memory system, or 

address relocation system. This class includes instructions that would allow 

the VM to access any location that is not in its virtual memory. 

D) All I/O instructions. 

B. TYPE II VMM 

A Type II VMM runs as an application under a host operating system.  A type II 

VMM is illustrated in Figure 3. 

VM1 VM2 VM3 

Host OS Apps 

Apps Apps Apps 

Windows 98 Windows NT Other Intel OS 

Type II VMM 

Host Operating System 

Hardware 

Figure 3.  A Hypothetical Type II VMM Supporting Popular PC Operating Systems. 
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A Type II VMM should be simpler than a Type I VMM because the memory 

management, processor scheduling, resource allocation, and hardware drivers of the host 

operating system are used in its implementation. A Type II VMM provides only 

virtualization support services. The Type II VMM virtualizes the real machine even 

though the VMM is running as an application in the host OS. 

To support a Type II virtual machine a processor must meet all of the hardware 

requirements for the Type I VMM listed above. However, in addition to these 

requirements, there are software requirements for the host operating system that a Type II 

VMM runs on. The host OS requirements are: 

1) The host OS can not do anything to invalidate the requirement that the method 

of executing non-privileged instructions must be roughly equivalent in both privileged 

and user mode. 

2) There must be primitives available in the. host OS to protect the VMM and 

other VMs from the active virtual machine. Examples of this primitive include a 

protection primitive, address translation primitive, or a sub-process primitive. 

When the virtual machine traps because it attempted to execute a sensitive 

instruction, the host OS must direct the signal to the VMM. Therefore, the host OS needs 

a primitive to perform this action. The host OS also needs a mechanism to allow a VMM 

to run the virtual machine as a sub-process. The VMM must still be able to simulate 

sensitive instructions. 

This thesis will not analyze software requirements for a host OS because we are 

interested in analyzing the Intel processor's capability to run a secure VMM. A VMM 

that runs under an existing commercial-off-the-shelf OS that was designed for the Intel 

Pentium architecture such as Windows, Linux, and FreeBSD will in all likelihood not 

have a high level of security (it should be noted, however, that high assurance operating 

systems have been developed for the Intel architecture such as the WANG XTS 300 

STOP [Ref. 4] and the Gemini GTNP GEMSOS [Ref. 5]). Therefore, a secure 

implementation of a VMM will almost certainly have to be a Type I VMM. 
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As with third generation processors, Goldberg found that most host operating 

systems (4 out of the 5 that were examined) could not support virtual machines. Again, 

this is because the operating systems were not designed with virtualization in mind. 

C.       HYBRID VMM 

Often, if a processor does not meet the Type I or Type II VMM requirements, it 

can still implement a hybrid virtual machine monitor. A hybrid VMM has all of the 

advantages of normal VMMs and avoids the performance penalties of a CSIM. A hybrid 

virtual machine is functionally equivalent to the real machine. The major difference 

between an HVM and a VMM is that an HVM interprets every privileged instruction in 

software, whereas a VMM may directly execute some privileged instructions. Therefore, 

it treats the privileged mode of hardware as a pure software construct. In both a VMM 

and an HVM, all non-privileged instructions execute directly on the processor. 

An HVM has less strict hardware requirements than a VMM for two reasons. 

First, the HVM does not have to directly execute non-sensitive privileged instructions 

because they are all emulated in software. Second, because of the emulation, the HVM 

does not have to map the most privileged processor mode into another privilege level of 

the processor. Performance of an HVM is usually lower than that of a VMM as a result of 

a higher number of privileged instructions being interpreted instead of being executed 

directly on the hardware. 

The hardware requirements for an HVM to be virtualizable are changed in the 

following ways. First, requirement 1, which states that the method of executing non- 

privileged instructions must be roughly equivalent in both privileged and user mode, is 

eliminated. Second, requirement 3A, which states that if an instruction attempts to 

change or reference the mode of the VM or the state of the machine, there must be a way 

to automatically signal the VMM and a way to simulate the instruction, is weakened. Of 

the seven third generation processors that failed Goldberg's analysis for VMM, four of 

them were candidates for an HVM because of the less strict requirements. 
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Now that each type of VMM and its hardware requirements have been defined, it 

is necessary to examine the Intel Pentium architecture to see if it can support any of these 

VMMs. 
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III. CAN THE INTEL ARCHITECTURE SUPPORT A VIRTUAL 

MACHINE MONITOR? 

This chapter will analyze whether or not the Intel Pentium architecture is 

virtualizable by using the hardware requirements that were described in the previous 

chapter. A major result of this analysis is Appendix B, which contains every documented 

instruction for the Intel Pentium architecture and whether or not it supports virtualization. 

Whether or not the Intel architecture is virtualizable is "a hit-or-miss proposition" 

because it was not designed to support virtual machines. After examining the processor 

requirements for virtualization, it can be seen that any instruction in the processor's 

instruction set that violates rule 1, 2, 3A, 3B, 3C, or 3D prevents the processor from 

running a Type I or Type II VMM. Additionally, any instruction that violates rule 2, 3A 

in its weaker form, 3B, 3C, or 3D prevents the processor from running an HVM. By 

combining these two statements, one can see that any instruction that violates rule 2, 3A 

in its weaker form, 3B, 3C, or 3D makes the processor non-virtualizable. 

With respect to the VMM hardware requirements listed above, Intel meets all 

three of the main requirements for virtualization. 

Requirement 1: The method of executing non-privileged instructions must be 

roughly equivalent in both privileged and user mode. Intel meets this requirement 

because the method for executing privileged and non-privileged instructions is the same. 

The only difference between the two types of instructions in the Intel architecture is that 

privileged instructions cause a general protection exception if the CPL is not equal to 0. 

Requirement 2: There must be a method such as a protection system or an address 

translation system to protect the real system and any other VMs from the active VM. 

Intel uses both segmentation and paging to implement its protection mechanism. Paging 

is a mechanism where sections of a program's execution environment are mapped into 

physical memory as they are needed. Segmentation provides a mechanism to divide the 

linear address space into individually protected address spaces (segments). Segments are 
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used to hold the code, data, and stack for programs and to hold system data structures 

such as task state segment and a local descriptor table. Segments have a descriptor 

privilege level (DPL) ranging from zero to three that specifies the privilege level of the 

segment. The DPL is used to control access to the segment. Using DPLs, the processor 

enforces the boundaries between segments and does not allow one program to write into 

another program's segments. 

Requirement 3: There must be a way to automatically signal the VMM when a 

VM attempts to execute a sensitive instruction. It must also be possible for the VMM to 

simulate the effect of the instruction. The Intel architecture uses interrupts and 

exceptions to redirect program execution and allow interrupt and exception handlers to 

execute when a privileged instruction is executed by an unprivileged task. However, the 

Intel instruction set contains instructions that are sensitive and unprivileged. The 

processor will execute unprivileged, sensitive instructions without generating an interrupt 

or exception. Therefore, a VMM will never have the opportunity to simulate the effect of 

the instruction. 

After examining each member of the Intel instruction set (as of 20 June 99), it 

was found that seventeen instructions violate requirement 3. All seventeen instructions 

violate either part B or part C of requirement 3. An analysis of every Intel instruction can 

be found in Appendix C. The list in Appendix C contains the instruction name, its class, 

whether it is sensitive, whether it is privileged, whether it prevents virtualization, and the 

reason (if any) why it prevents virtualization. Each of the instructions that make the Intel 

processor non-virtualizable will be discussed in more detail below. Any manufacturer 

who wishes to make a version of the Intel Pentium chip that is truly virtualizable would 

need to focus on these instructions. Since all seventeen of the instructions to be discussed 

violate one of two requirements, there is a considerable amount of overlap in the 

discussion of each of instructions. 
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A.        INSTRUCTIONS THAT REFERENCE OR CHANGE SENSITIVE 
REGISTERS (RULE 3B) 

Several Intel instructions break hardware virtualization rule 3B. The rale states 

that instructions are sensitive if they read or change sensitive registers and/or memory 

locations such as a clock register and interrupt registers. 

1.        SGDT, SIDT, and SLDT Instructions 
The SGDT, SIDT, and SLDT instructions are similar in the way that they violate 

this rule. In protected mode, all memory accesses pass through either the GDT or LDT. 

The GDT and LDT contain segment descriptors that provide the base address, access 

rights, type, length, and usage information for each segment. The interrupt descriptor 

table (IDT) is similar to the GDT and LDT, but it holds gate descriptors that provide 

access to interrupt and exception handlers. The GDTR, LDTR, and IDTR all contain the 

linear addresses and sizes of their respective tables. 

All three of these instructions (SGDT, SIDT, SLDT) store a special register value 

into some location. The SGDT instruction stores the contents of the GDTR in a 6-byte 

memory location. The SLDT instruction stores the segment selector from the LDTR in a 

16 or 32-bit general-purpose register or memory location. The SIDT instruction stores the 

contents of the IDTR in a 6-byte memory location. These instructions are normally only 

used by operating systems but are not privileged in the Intel architecture. Since the Intel 

processor only has one LDTR, IDTR, and GDTR, a problem arises when multiple 

operating systems try to use the same registers. Even though these instructions do not 

protect the sensitive registers from reading by unprivileged software, the Intel processor 

allows partial protection for these registers by only allowing tasks at CPL 0 to load the 

registers. This means that if a VM tries to write to one of these registers, a trap will be 

generated. The trap allows a VMM to produce the expected result for the VM. However, 

if an OS in a VM uses SGDT, SLDT, or SIDT to reference the contents of the IDTR, 

LDTR, or GDTR, the register contents that are applicable to the host OS or Type I VMM 

will be given. This could cause a problem if an operating system of a virtual machine 

(VMOS) tries to use these values for its own operations since they are what the VMOS 
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expects. Therefore, a Type I VMM or Type II VMM must provide each VM with its own 

virtual set of IDTR, LDTR, and GDTR registers. 

2.        SMSW Instruction 
The SMSW instruction stores the machine status word (bits 0 through 15. of 

control register 0) into a general-purpose register or memory location. Bits 6 through 15 

of CRO are reserved bits that are not supposed to be modified. Bits 0 through 5, however, 

contain system flags that control the operating mode and state of the processor. These six 

bits are described in Table 1: 

Bit 
Number 

Flag Name Description 

0 PE - Protection Enable Enable protected mode when set and real-mode 
when clear. 

1 MP - Monitor Coprocessor Controls the interaction of the WAIT or FWAIT 
instruction with the TS flag. 

2 EM - Emulation Indicates that the processor has an internal or 
external floating point unit when clear. 

3 TS-Task Switched Allows delayed saving of the floating point unit 
context on a task switch until the unit is accessed 
by the new task. 

4 ET - Extension Type For 386 and 468 processors, indicates whether an 
Intel 387 DX math coprocessor is present 
(hardcoded to 1 on >Pentium processors). 

5 NE - Numeric Error Enables the internal mechanism or PC-style 
mechanism for FPU error reporting. 

Table 1. Important CRO Machine Status Word Bits. 

Even though this instruction only stores the machine status word, it is still 

sensitive and unprivileged. Consider the following scenario: A VMOS is running in real 

mode under the virtual environment of a VMM running in protected mode on the 

processor. If the VMOS checked the MSW to see if it was in real mode, it would 

incorrectly see that the PE bit is set. This means that the machine is in protected mode. 

If the VMOS halts or shuts down if in protected mode, the VMOS will not be able to run 

successfully. 
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According to the Intel instruction set reference [Ref. 6], this instruction is only in 

the architecture to be backward compatible with the Intel 286 processor. Programs 

written for the Intel 386 processor and later are supposed to use the MOV instruction to 

load and store control registers. Furthermore, the MOV to and from control register 

instructions are privileged instructions. Therefore, the SMSW could be removed from the 

Intel architecture completely and would only affect systems that needed to be backward 

compatible with the Intel 286 processor. Application software written for the Intel 286 

and 8086 processors should be unaffected because the SMSW instruction is a system 

instruction that should not be used by application software. 

3.        PUSHF and POPF Instructions 
The PUSHF and POPF instructions each reverse the operation of the other.  The 

PUSHF instruction pushes the lower 16 bits of the EFLAGS register onto the stack and 

decrements the stack pointer by 2. The POPF instruction pops a word from the top of the 

stack, increments the stack pointer by 2, and stores the value in the lower 16 bits of the 

EFLAGS register. The PUSHFD and POPFD instructions are the 32-bit counter-parts of 

the POPF and PUSHF instructions. Pushing the EFLAGS register onto the stack allows 

the contents of the EFLAGS register to be examined. Much like the lower 16 bits of the 

CRO register mentioned above, the EFLAGS register contains flags that control the 

operating mode and state of the processor. Therefore, the PUSHF/PUSHFD instructions 

prevent the Intel processor from being virtualizable in the same way that the SMSW 

instruction prevents virtualization. In virtual-8086 mode, the IOPL must equal 3 to use 

the PUSHF instructions. Of the 32 flags in the EFLAGS register, fourteen are reserved 

and six are arithmetic flags. The bits of concern are described in Table 2 below. 

In contrast to the PUSHF instruction, the POPF instruction allows values in the 

EFLAGS register to be changed. The effect of the POPF instruction varies based on what 

mode the processor is operating in. In real-mode, or when operating at CPL 0, all non- 

reserved flags in the EFLAGS register can be modified except the VM, VIP, and VIF 

flags. In virtual-8086 mode, the IOPL must equal 3 to use the POPF instructions. The 

IOPL allows an OS to set the privilege level needed to perform I/O.   In virtual-8086 
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mode, the VM, RF, IOPL, VIP, and VIF flags are unaffected by the POPF instruction. In 

protected mode, there are several conditions based on privilege levels. First, if the CPL is 

greater than 0 and less than or equal to the IOPL, all flags can be modified except IOPL, 

VIP, VIF, and VM. The interrupt flag is altered when the CPL is at least as privileged as 

the IOPL. Finally, if a POPF/POPFD instruction is executed without enough privilege, 

an exception is not generated. However, the bits of the EFLAGS register are not 

changed. 

Bit 
Number 

Flag Name Description 

8 TF - Trap Set to enable single-step mode for debugging. 
9 IF - Interrupt Enable Controls the response of the processor to maskable 

interrupt requests. 
10 DF - Direction Setting causes string instructions to process 

addresses from high to low. 
12-13 IOPL - I/O Privilege Level Indicates the I/O privilege level of the currently 

running task. 
14 NT - Nested Task Set when the current task is linked to the previous 

task. 
16 RF - Resume Controls the processor's response to debug 

exceptions. 
17 VM - Virtual-8086 Mode Enables Virtual-8086 mode when set. 
18 AC - Alignment Check Enables alignment checking of memory references. 
19 VIF - Virtual Interrupt Virtual image of the IF flag. 
20 VIP - Virtual Interrupt 

Pending 
Indicates whether or not an interrupt is pending. 

21 ID - Identification If a program can set or clear this instruction, the 
CPUID instruction is supported. 

Table 2.   Important EFLAGS Register Bits. 

The POPF/POPFD instructions also prevent virtualization of the 

processor. This is because they allow modification of some of the bits in the EFLAGS 

register that control the operating mode and state of the processor. 

22 



B.        INSTRUCTIONS THAT REFERENCE THE PROTECTION SYSTEM 
(RULE3C) 

Many Intel instructions violate rule 3C. 

1. LAR, LSL, VERR, VERW Instructions 
Four instructions violate the rule in a similar manner:   LAR, LSL, VERR, and 

VERW. The LAR instruction loads access rights from a segment descriptor into a 

general purpose register. The LSL instruction loads the unscrambled segment limit from 

the segment descriptor into a general-purpose register. The VERR and VERW 

instructions verify whether a code or data segment is readable or writable from the 

current privilege level. The problem with all four of these instructions is that they all 

perform the following check during their execution: (CPL > DPL) OR (RPL > DPL). 

This conditional checks to ensure that the current privilege level (located in bits 0 and 1 

of the CS register and the SS register) and the requested privilege level (bits 0 and 1 of 

any segment selector) are both greater than the descriptor privilege level (the privilege 

level of a segment). This is a problem because a VM normally does not execute at the 

highest CPL (CPL = 0). It is normally executed at the user or application level (CPL = 3) 

so that all privileged instructions will cause traps that can be handled by the VMM. 

However, most operating systems assume that they are operating at the highest privilege 

level and that they can access any segment descriptor. Therefore, if a VMOS running at 

CPL = 3 uses any of the four instructions listed above to examine a segment descriptor 

with a DPL < 3, it is likely that the instruction will not execute properly. 

2. POP Instruction 
The reason that the POP instruction prevents virtualization is very similar to that 

mentioned in the previous paragraph. The POP instruction loads a value from the top of 

the stack to a general-purpose register, memory location, or segment register. However, 

the POP instruction can not be used to load the CS register since it contains the CPL. A 

value that is loaded into a segment register must be a valid segment selector. The reason 

that POP prevents virtualization is because it depends on the value of the CPL. If the SS 

register is being loaded and the segment selector's RPL and the segment descriptor's 
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DPL are not equal to the CPL, a general protection exception is raised. Additionally, if 

the DS, ES, FS, or GS register is being loaded, the segment being pointed to is a 

nonconforming code segment or data, and the RPL and CPL are greater than the DPL, a 

general protection exception is raised. As in the previous case, if a VM's CPL is 3 

because it is running as a user application in a VMM, these privilege level checks could 

cause unexpected results if a VMOS assumes that it is in CPL 0. 

3. PUSH Instruction 
The PUSH instruction also prevents virtualization because it references the 

protection system. The PUSH instruction allows a general-purpose register, memory 

location, an immediate value, or a segment register to be pushed onto the stack. This can 

not be allowed because bits 0 and 1 of the CS and SS register contain the CPL of the 

current executing task. The following scenario demonstrates why these instructions could 

cause problems for virtualization. A process that thinks it is running in CPL 0 pushes the 

CS register to the stack. It then examines the contents of the CS register on the stack to 

check its CPL. Upon finding that its CPL is not 0, the process may halt. 

4. CALL, JMP, INT n, and RET Instructions 
The CALL instruction saves procedure linking information to the stack and 

branches to the procedure given in its destination operand. There are four types of 

procedure calls: near calls, far calls to the same privilege level, far calls to a different 

privilege level, and task switches. Near calls and far calls to the same privilege level are 

not a problem for virtualization. Task switches and far calls to different privilege levels 

are problems because they involve the CPL, DPL, and RPL of the Intel protection system. 

If a far call is executed to a different privilege level, the code segment for the procedure 

being accessed has to be accessed through a call gate. A task uses a different stack for 

every privilege level. Therefore, when a far call is made to another privilege level, the 

processor switches to a stack corresponding to the new privilege level of the called 

procedure. A task switch operates in a manner similar to a call gate. The main difference 

is that the target operand of the call instruction specifies the segment selector of a task 

gate instead of a call gate.   Both call gates and task gates have many privilege level 
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checks in their execution that compare the CPL and RPL to DPLs. Since the VM 

normally operates at user level (CPL 3), these checks will not work correctly when a 

VMOS tries to access call gates or task gates at CPL 0. 

The discussion above on LAR, LSL, VERR, and VERW provides a specific 

example of how running a CPL 0 operating system as a CPL 3 task could cause a 

problem. The JMP instruction is similar to the CALL instruction in both the way that it 

executes and the reasons it prevents virtualization. The main difference between the 

CALL and the JMP instruction is that the JMP instruction transfers program control to 

another location in the instruction stream and does not record return information. The 

INT instruction is also similar to the CALL instruction. The INT n instruction performs a 

call to the interrupt or exception handler specified by n. INT n does the same thing as a 

far call made using the CALL instruction except that it pushes the EFLAGS register onto 

the stack before pushing the return address. The INT instruction references the protection 

system many times during its execution. 

The RET instruction has the opposite effect of the CALL instruction. It transfers 

program control to a return address that is placed on the stack (normally by a CALL 

instruction). The RET instruction can be used for three different types of returns: near, 

far, and inter-privilege-level returns. Much like the CALL instruction, the inter-privilege- 

level far return examines the privilege levels and access rights of the code and stack 

segments that are being returned to determine if the operation should be allowed. The 

DS, ES, FS, and GS segment registers are cleared by the RET instruction if they refer to 

segments that can not be accessed by the new privilege level. Therefore, RET prevents 

virtualization because having a CPL of 3 (the VM's privilege level) could cause the DS, 

ES, FS, and GS registers to not be cleared when they should be. The IRET/IRETD 

instruction is similar to the RET instruction. The main difference is it returns control 

from an exception, interrupt handler, or nested task. It prevents virtualization in the same 

way that the RET instruction does. 
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5. STR Instruction 
Another instruction that references the protection system is the STR instruction. 

The STR instruction stores the segment selector from the task register into a general- 

purpose register or memory location. The segment selector that is stored with this 

instruction points to the task state segment of the currently executing task. This 

instruction prevents virtualization because it allows a task to examine its requested 

privilege level (RPL). Every segment selector contains an index into the GDT or LDT, a 

table indicator, and an RPL. The RPL is represented by bits 0 and 1 of the segment 

selector. The RPL is an override privilege level that is checked (along with the CPL) to 

determine if a task can access a segment. The RPL is used to ensure that privileged code 

cannot access a segment on behalf of an application unless the application also has the 

privilege to access the segment. This is a problem because a VM does not execute at the 

highest CPL or RPL (RPL = 0), but at RPL = 3. However, most operating systems 

assume that they are operating at the highest privilege level and that they can access any 

segment descriptor. Therefore, if a VM running at a CPL and RPL of 3 uses the STR to 

store the contents of the task register and then examines the information, it will find that 

it is not running at the privilege level at which it expects to run. 

MOV is another instruction that prevents virtualization of the Intel processor. 

There are many variants of the move instruction. The only two that prevent virtualization 

are the two that load and store control registers. The MOV opcode that stores segment 

registers is a problem because it allows all six of the segment registers to be stored to 

either a general-purpose register or to a memory location. This is a problem because the 

CS and SS registers both contain the CPL in bits 0 and 1. Therefore, a task could store 

the CS or SS in a general-purpose register and examine the contents of that register to 

find that it is not operating at the correct privilege level. The MOV opcode that loads 

segment registers does offer a small amount of protection because it does not allow the 

CS register to be loaded at all. However, if the task tries to load the SS register, several 

privilege checks occur that once again become a problem when the VM is not operating 

at the privilege level at which a VMOS is expecting—typically 0. 
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C.       CONCLUSION 

The analysis above clearly shows that the Intel processor is not virtualizable 

according to Goldberg's hardware rules. However, VMware provides a Type II VMM 

for the Intel Pentium processor. Their product allows a user to run multiple Intel 

operating systems such as Windows NT and Linux on the same computer at the same 

time. After installing the VMware product, I am convinced that VMware Inc. does 

provide a virtualization environment in the form of a Type II VMM. So the question 

becomes: how does VMware virtualize the Intel processor even though there are 

seventeen instructions that prevent it from being virtualizable? This question will be 

addressed in Chapter IV. 
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IV. VMWARE ANALYSIS 

A.       OVERVIEW OF VMWARE 

Virtual machine monitors were invented in the 1970s to multiplex expensive 

mainframe hardware to system programmers. In the past 30 years, hardware performance 

has increased and prices have decreased, allowing most people to have a PC on their 

desktops. This trend made VMMs almost non-existent. Today, however, a company 

called VMware thinks there is a need for VMMs to multiplex and manage complex, 

expensive software environments. As a result, VMware has created a modern version of 

the 1970s virtual machine monitor, but for the PC instead of for large mainframes. 

Until VMware emerged, it was not possible to run multiple operating systems on 

the same Intel x86 PC at the same time. Only one operating system at a time could run 

and a reboot was needed to switch between operating systems. VMware addresses this 

problem by using what they call "Virtual Platform technology" (patent pending). 

The Virtual Platform is a thin software layer that multiplexes the PC's hardware to 

virtual machines (see Figure 4 below). 

Virtual Machines 

Real Machine 

Virtual Machine ± Virtual Machine 2 

Apps 1 Apps 2 
OS 1 OS 2 

x86, motherboard, 
disks, display, net, ... 

x86, motherboard, 
disks, display, net, ... 

VMware Virtual Platform ™ 
x86, motherboard, disks, 

display, net, ... 

Figure 4. VMware Virtual Platform From Ref. [7]. 
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Each virtual machine can run any operating system the user chooses. VMware for 

Linux currently supports the following operating systems: MS-DOS 6, Windows 3.1, 

Windows 95, Windows 98, Windows NT 4.0, Windows 2000 Professional Beta, Red Hat 

Linux, Caldera OpenLinux, SuSE Linux, and FreeBSD. VMware for Windows NT will 

support all of the above and also Solaris 7 Intel Edition. VMware only supports these 

specific operating systems; it can not run any operating system designed for the Intel 

Pentium architecture. For example, OS/2 and BeOS will not run as VMOSs on VMware. 

VMware supports the most common types of I/O devices, such as IDE disks, standard 

floppy drives, Ethernet cards, and sound cards.3 

1.        VMware Claims 
VMware Inc. makes many claims about what VMware can do in [Ref. 7]. These 

claims and an explanation if needed are described below. 

Claim: [VMware can] "Run multiple operating systems and their applications 

simultaneously in separate virtual machines on a standard PC." VMware installs like a 

normal application in a host OS, either Linux or Windows NT. Running the VMware 

application allows you to power on a virtual machine. Since the virtual machine has an 

environment that is very similar to the real machine, many Intel Pentium operating 

systems and their applications can run inside the virtual machine. 

Claim: [VMware can] "Run virtual machine sessions on the X-Windows desktop 

or in full-screen mode; other virtual machines continue to run in the background." Since 

virtual machines are really host OS applications, they sit on the host OS desktop. 

However, if the user toggles the full screen mode in a virtual machine, its VMOS can use 

the full screen. In full screen mode, it is impossible to tell that other VMs and the host 

OS are running in the background. A hot key can also be used to switch between virtual 

machines. Since each virtual machine is a process in the host OS, it is subject to the host 

3 MS-DOS, Windows 3.1, Windows 95, Windows 98, Windows NT 4.0, Windows 2000 Professional Beta, and 

OS/2 are all trademarks of the Microsoft Corporation. AH other trademarks including Red Hat Linux, Caldera 

OpenLinux, SuSE Linux, FreeBSD, Solaris 7 Intel Edition, and BeOS are trademarks of their respective owners. 
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OS scheduling algorithm.    Therefore, all virtual machines that are running will be 

scheduled like normal applications. 

Claim: [VMware can] "Run operating systems already installed on a multi-boot 

computer without reconfiguring." When configuring VMware to run a virtual machine, a 

user can specify a mount point for the disk that the VMOS is located on. This allows any 

OS that is already installed on the hard disk to be used in a virtual machine. 

Claim: [Users can] "Install a virtual machine without repartitioning the system's 

hard drive." If a user would like to create a new virtual machine and there is not enough 

space left on the hard disk to partition the drive, the user can use a virtual hard disk. If 

this is done, a virtual machine encapsulates the hard drive for the VMOS and its 

applications into one file that resides in the host OS file system. 

Claim: [Users can] "Encapsulate an entire computing environment and move it 

between computers as easily as copying a file." Using the example in the previous claim, 

an entire VMOS and its applications are encapsulated in one file. This, file can be copied 

from one computer to another, allowing an entire computing environment to be moved. 

Claim: [VMware permits users to] "Share files and applications among virtual 

machines using a virtual network within a PC." Each of up to four virtual machines can 

be assigned a different network address. Each of the virtual machines can also access the 

network card. This allows virtual machines to share files in many ways. For example, 

virtual machines could use FTP or NFS to share files. 

Claim: [Users can] "Run client-server or Web applications between virtual 

machines on the same PC." Having multiple network addresses allows a client-server 

relationship virtual machines. One virtual machine can be designated as the server and 

another as the client. The client can then use the server's IP address to begin 

communication. 

Claim: [Users can] "Test the same application concurrently on different operating 

system configurations, i.e. with different amounts of memory, different operating system 

revisions, or different system settings." Each time a VMware application is started in the 

31 



host OS, a VM configuration must be loaded before running a VM. The configuration 

file can be used to specify different system settings such as those described in the claim. 

The configuration file can be changed without affecting the hard drive partition or virtual 

partition on which the VMOS resides. This allows virtual machines with different system 

configurations to test applications. 

Claim: [Users can] "Dedicate a virtual machine to run untrusted applications 

downloaded from the Internet." Since each virtual machine is isolated from other virtual 

machines and the host OS, untrusted applications should only affect the virtual machine 

in which they are running. This claim of isolation will be examined further in Chapter V. 

Claim: [Users can] "Upgrade operating system software without losing 

compatibility-- the legacy OS and its applications are simply transferred to a virtual 

machine." This claim is self-explanatory. 

Claim: [Users can] "Rely on a known stable hardware platform, defined by 

VMware Virtual Platform. Virtual machines configured for this stable hardware platform 

will correctly execute on any hardware that supports the virtual platform." When a 

VMware user defines a configuration for a virtual machine, he specifies many things such 

as how much memory the VM will have, whether it will have a network card, etc. 

VMware abstracts the real hardware and presents a specific hardware platform to each 

VMOS. For example, 10 different computers could have 10 different network cards. 

However, all VMOSs are configured for the same type of network card, as defined by 

VMware. Therefore, virtual machines that are configured to run with a network card will 

run on any VMware virtual machine, no matter what the real network card in the machine 

is. 

2.        Virtual Platform Architecture 
VMware works in conjunction with a host operating system.   The OS can be 

either Linux or Windows NT. VMware has a "dual-mode personality" which is 

illustrated in Figure 5. VMware runs both as an application in the host operating system 

and as a VMM running directly on the hardware. VMware implements as much as 

possible in the VMM because, since it sits directly on the hardware, it provides greater 
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performance than the application portion of VMware. The application portion of 

VMware is used for the device-dependent portions of VMware. VMware did not have to 

write their own device drivers because they simply use the device drivers of the host 

operating system. 

Apps 1 Apps:2 

0S1 OS 2 

VM 1 VM.Z 

Apps 1 Apps 2 
Host 
OS 

Apps 

; °s i OS 2 

VMware Virtual Platform ™ 

VJVIwa re Virtua IP latform ™ Host Operating System 

Hardware Hardware 
Directly to the hardware Through the Host Operating System 

Figure 5. VMware Virtual Platform Dual Mode Personality From Ref. [7]. 

VMware Virtual Platform uses three software components to implement the- 

"dual-personality" described above.      They are the application, monitor, and driver. 

These components and their relationships are illustrated in Figure 6 below. 

VMOS + Apps 

Virtual Machine 

VP - Application 

± 
VP- Driver 

HOST OS VP - Monitor 

HARDWARE 

Figure 6. VMware Virtual Platform Architecture. 
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The driver component is a device driver written for the host operating system. It 

provides a tailored interprocess communication mechanism between the monitor and the 

application. The host operating system is unaware that VMware's monitor interacts 

directly with the PC's hardware. Additionally, the Virtual Platform runs as a normal 

application process under the host operating system. The driver is only necessary 

because the host OS is protected from user applications. If the host OS were not 

protected from user applications, the application and monitor could communicate 

directly. 

The monitor component runs in privileged mode directly on the hardware, 

allowing it to execute privileged instructions without appealing to the host operating 

system. Without the monitor, VMware would resemble a simulator with much lower 

performance. The monitor calls the application component through the device driver to 

access system resources, including processor scheduling, physical memory management, 

and device drivers. 

The application component is installed like a normal application on the host OS. 

It configures, launches, and administers virtual machines. After being called by the 

monitor (through the device driver) to access system resources, the application makes the 

appropriate calls to the host OS. 

3. Isolation 
VMware uses Intel hardware protection mechanisms to isolate virtual machines 

from the host operating system and from each other. VMware says that the isolation 

"does not make any assumptions concerning the software that runs within the virtual 

machine. Even a rogue application or operating system is confined to the VMware Virtual 

Platform" [Ref. 7]. In fact, the VMware product specification states that virtual machines 

are isolated from faults. 

Since virtual machines are not supposed to affect each other or the host OS, 

crashes that occur in a virtual machine should not affect data or applications outside of 

the crashing virtual machine. However, VMware does admit that any operating system 

that uses an undocumented or undefined feature of the hardware could be incompatible. 
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Therefore, operating systems that rely on undocumented or unknown features of the 

hardware may not work correctly, but such operating systems can not crash VMware or 

interfere with other virtual machines. 

4.        Performance 
Without high performance, VMware would not be a worthwhile product.   By 

directly executing instructions on the processor, VMware reduces performance overhead. 

VMware claims that the "overhead of VMware Virtual Platform can be as low as 3%-5% 

for certain computation-intensive benchmarks" [Ref. 7]. Most applications running in 

virtual machines perform as if they were running on the real machine. Performance is the 

main difference between VMware and traditional simulators and emulators. 

B.       VMWARE AS A "VIRTUAL VMM" 

After analyzing VMware literature and installing and running the VMware 

product, it is evident that VMware has developed a product that is close to a Type II 

VMM for the Intel Pentium architecture. Screen shots from VMware running with both a 

Linux host operating system and a Windows NT host operating system are on the 

following page. 

Even though the VMware product works very much like a Type II VMM, there 

are many reasons why VMware should be considered a "virtual VMM" and not a true 

Type II VMM. These reasons can be divided into two categories: hardware and software. 

1.        Hardware 
The first hardware reason that VMware is not a true Type II VMM is that, as 

mentioned in the previous chapter, the Intel processor is not truly virtualizable because of 

the' seventeen sensitive, unprivileged instructions. Therefore, in order to implement a 

VMM on the Intel architecture each of these instructions has to be emulated by software 

in a VMM. However, emulating the instructions is not the hardest part. Since these 

instructions are not privileged, they will not trap when executed by user-level code. This 

means that the VMM must examine instructions before they are executed to see whether 

an instruction is one of the seventeen problem instructions that will not generate a trap. 
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Figure 7. VMware Screen Shot Using Linux Host OS From Ref. [7]. 
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Figure 8. VMware Screen Shot Using Linux Host OS From Ref. [7]. 
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The seventeen "problem" instructions are not the only roadblock for virtualizing 

the Intel processor. Since the processor uses segmentation and rings in its design, it is 

harder to virtualize because any VMM desiring to virtualize the processor must also 

virtualize these features. One such problem is known as ring collapsing [Ref. 1]. A 

VMM prevents access to the real system hardware by not running VM ring 0 code as ring 

0 code in the real system. This means that ring 0 of the VM must be mapped to a less 

privileged ring. The rings in the Intel architecture are both ordered and finite. There are 

many schemes that can be used to solve the ring collapsing problem. The easiest is to 

map ring 0 of the VM into the VMM, meaning that any ring 0 instruction is emulated by 

the VMM. This is, in effect, a hybrid VMM. To avoid the poor performance of an 

HVM, another strategy is to map two virtual, adjacent rings into the same physical ring. 

This technique has the side effect of destroying the ring boundary between the two 

adjacent layers that are used. Fortunately, most operating systems written for the Intel 

processor only use two rings of the processor: ring 0 and ring 3 for the operating system 

and applications respectively. This simplifies the ring collapsing problem because a 

VMM would have three physical rings in which to emulate two virtual rings. 

2. Software 
The first software reason why VMware is not a true Type II VMM is that 

VMware can not run some operating systems designed for Intel Pentium processors. If 

VMware provided true virtual environments that are duplicates of the real machine, it 

should be able to run any operating system that can run on the real machine. However, 

when this thesis was written, VMware could not support the Windows 2000 Professional 

Beta or the Solaris 7 Intel Edition as a guest operating system. VMware does plan to 

support these operating systems in the future. In addition, there are many other operating 

systems that are known not to work as VMware guest operating systems and will not be 

supported by VMware. These include BeOS, Minix, OS/2, OS/2 Warp, QNX, SCO 

Unix, and SCO UnixWare. It is not clear why these operating systems will not run in a 

VMware virtual machine. VMware does say that any operating system that relies on 

undocumented or undefined features of the PC hardware will likely be incompatible with 



their product. However, the reason that these guest operating systems will not run in a 

virtual machine probably has more to do with special idiosyncrasies in their 

implementation than with undocumented or undefined instructions and features. 

Furthermore, VMware may not support these operating systems as guest OSs because 

their market share is so low that it is not cost effective to test and guarantee their 

operation. 

A second reason why VMware is not a Type II VMM is because the Intel Pentium 

architecture does not meet Popek's essential VMM requirement. As stated in [Ref. 3], "a 

virtual machine monitor may be constructed if the set of sensitive instructions for that 

computer is a subset of the set of privileged instructions." For the Intel architecture, I 

have demonstrated that this is not the case in the previous chapter. 

Finally, Popek's characteristics of a VMM are: 1) the VMM provides an 

environment that is "essentially identical" to the environment of the real machine, 2) 

programs running in this environment show only minor decreases in speed, and 3) the 

VMM is in complete control of system resources. Popek described "essentially identical" 

as being a program running exactly the same as if it were run on the real machine, except 

for possible timing dependencies or system resource availability. VMware does not have 

this characteristic because a VMOS that runs under VMware may not work correctly if it 

is configured to support the real hardware attached to the underlying real machine. In 

order to make Windows detect hardware correctly in the VM environment, the system 

administrator must install the driver that VMware tells him or her to. For example, even 

though the computer has a 3COM NIC card, the driver specified to Windows may be 

different. Another example of VMware not providing an identical environment is that 

parallel ports are only uni-directional in the VM environment. This means that parallel 

external Iomega Zip and Imation Superdisk drives can not be used. 
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V. CAN AN INTEL "VMM" BE SECURE? 

In this chapter, I will examine several security issues for a VMM that is designed 

for the Intel Pentium architecture. The chapter begins with a discussion on the VAX 

Security Kernel to show that secure VMMs are possible. Second, security of the Intel 

processor is covered. Third, security issues that arise when using the Intel architecture to 

run VMMs are discussed. Fourth, security ramifications of using VMware to separate 

mandatory security classes are examined. Finally, a better approach for using a VMM to 

separate mandatory security classes on the Intel architecture is covered. 

A.       ARE SECURE VMMS POSSIBLE? 

Before discussing whether or not the Intel processor can support a secure VMM, it 

is necessary to show that secure VMMs are possible. A highly secure Type I VMM was 

the VAX Security Kernel [Ref. 8]. The VAX Security Kernel was created to develop a 

Type I virtual machine monitor for the VAX architecture. The system's hardware, 

microcode, and software were designed to meet TCSEC Class Al assurance and security 

requirements. The project also maintained standard VMS and Ultrix-32 interfaces to run 

COTS operating systems and applications in virtual machines. 

A security kernel is defined as hardware and software that implements the 

reference monitor concept. [Ref. 9] A reference monitor enforces authorized access 

relationships between the subjects and objects of a system. An implementation of a 

reference monitor is called a reference validation mechanism. Three design requirements 

must be-met by a reference validation mechanism: 

1) The mechanism must be tamperproof. 

2) The mechanism must always be invoked. 

3) The mechanism must be small enough to be to subject to analysis and tests to ensure 

completeness. 
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The VAX security kernel is a VMM that allows multiple virtual machines to run 

concurrently on a single VAX system. The security kernel could support a large number 

of simultaneous users and provided isolation and controlled sharing of sensitive data. 

Since the VMM was a security kernel, many traditional features of VMMs, such as self- 

virtualization and debugging of one VM from another were not implemented in order to 

reduce kernel complexity and make the kernel highly secure. 

The VAX processor, much like the Intel Pentium processor, contained several 

instructions that were sensitive but not privileged. It also has four rings like the Intel 

processor. Since this project was conducted by Digital Equipment Corporation, the 

manufacturers of the VAX processor, the security kernel designers had the luxury of 

modifying the VAX processor microcode in order to make it virtualizable. Hall et al. 

[Ref. 10] describe the four instructions that prevented virtualization on the VAX 

processor: CHM, REI, MOVPSL, and PROBE. The CHM instruction switches to a mode 

of equal or increased privilege. The REI instruction switches to a mode of equal or 

decreased privilege. The MOVPSL instruction is used to read the Processor Status 

Longword (similar to the machine status word in the Intel architecture). The PROBE 

instruction is used to determine the accessibility of a page of memory. These four 

instructions read or write one of the following pieces of sensitive data: the current 

execution mode, the previous execution mode, the modify bit of a page table entry, and 

the protection bit of a page table entry. With only four problem instructions, the VAX 

processor did not have as many virtualization problems as the Intel processor does. 

In order to make the VAX processor virtualizable, DEC did not want to simply 

modify sensitive, unprivileged instructions to be privileged because standard VAX 

operating systems would not be able to run. An important project goal was to be able to 

run standard operating systems on the processor that supported the VMM in order to 

provide VMM users and the DEC sales force with flexibility in choosing their hardware 

and software. Furthermore, customers were already familiar with and had applications 

for VMS and Ultrix-32. Therefore, DEC used a more sophisticated approach.   Some of 
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the changes they made included defining a new VM mode bit, defining a new register 

called VMPSL, and defining a VM-emulation exception. DEC also changed microcode 

in order to address the four problem instructions described above. 

DEC used ring compression to avoid some modifications to the processor. Ring 

compression was implemented entirely in software and maps rings 0 and 1 (kernel and 

executive) of the VM to ring 1. This breaks down the protection between these two 

layers but was thought to be the simplest and most secure way to virtualize the four rings 

of the VAX processor. This choice had little security impact since, although the VMS 

operating system for the VAX used all four rings, all three inner rings were in fact used 

for fully trusted operating system software. 

Some virtual machine monitors (including, especially, IBM's VM/370) virtualize 

not only the CPU, but also the I/O hardware. Virtualizing the I/O hardware allows a 

VMOS to run almost unmodified. The VAX I/O hardware was difficult to virtualize 

because its I/O mechanisms read and write various control and status registers in the I/O 

space of physical memory. To overcome this difficulty, the VAX security kernel I/O 

interface used a special kernel call mechanism that was optimized for performance. To 

use this mechanism, a virtual machine executed a Move To Privileged Register (MTPR) 

instruction to a special kernel call register. The MTPR instruction trapped to software in 

the security kernel that performed the I/O. This new I/O interface meant that untrusted 

device drivers had to be written for all VMOSs that would run under the VMM. In 

choosing this strategy, the VAX security kernel development team was guided by the 

goal of making the operating system developer's task of supporting a virtual machine 

comparable to the task of supporting any other new VAX processor. Since each new 

VAX processor required some I/O interface and driver support by each operating system, 

the addition of a kernel call I/O interface was felt to be a reasonable design choice. 

The VAX security kernel applies mandatory and discretionary access controls to 

virtual machines. The kernel assigns every virtual machine an access class consisting of 

a secrecy class (based on the Bell and LaPadula model) and an integrity class (based on 
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the Biba model). The kernel also supports access control lists on all objects including 

real devices, disk and tape volumes, and security kernel volumes. The VMM security 

kernel is very different from a typical secure operating system because the subjects and 

objects are virtual machines and virtual disks, not files and processes. Files and processes 

are implemented by each VMOS. 

The two kinds of subjects in the VAX security kernel are users and virtual 

machines. Users communicate through a trusted path to a server process. The server 

processes are trusted and run only within the security kernel. The users minimum and 

maximum access class, the terminal's minimum and maximum access class, the user's 

discretionary access rights and privileges, and the privileges exercisable from the terminal 

all determine what the server can provide to the user. The other type of subjects, VMs, 

are untrusted subjects that run a VMOS. The VMOS is operated normally and will not 

affect the security of other virtual machines or the security kernel even if the operating 

system is penetrated.' 

When a user logs into the security kernel, the VMM establishes a session between 

the user's terminal line and the user's server. To connect to one of the VMs, the user 

issues a CONNECT command that specifies the name of the VM. If the connection is 

authorized, the security kernel suspends the session with the server and establishes a 

session between the user and the requested virtual machine. Virtual machines can be set 

up to run single users or multiple users. 

The VAX security kernel supports three types of objects: real devices, disk and 

tape volumes, and security kernel volumes. Real devices include those that can contain 

or transmit information and must be controlled by the TCB. These include disk drives, 

tapes, printers, terminal lines, and network lines. The contents of some disk and tape 

volumes are controlled completely by a virtual machine. Other disk volumes have a 

VAX security kernel file structure and can not be directly accessed by a VMOS. These 

are called VAX security kernel volumes. VAX security kernel volumes contain VAX 

security kernel files that are organized as a flat file system. These files are used for many 
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things including the implementation of virtual disk volumes for use by virtual machines 

and storage of long-term system databases such as the audit log and the authorization file. 

Since the VAX security kernel was designed to meet Class Al requirements, it 

had to enforce mandatory access controls. Each kernel object is assigned a sensitivity 

label, called an access class, consisting of a secrecy and an integrity class. Both of these 

classes are subdivided into a hierarchical level and a category set. The kernel supports 

256 secrecy levels, 256 integrity levels, 64 secrecy categories, and 64 integrity categories. 

To design the VAX security kernel, levels of abstraction were used to help reduce 

complexity and make specifications more precise and understandable. A layer only 

depends on layers below it. This prevents deadlock by removing loops [Ref. 11]. The 

layered design also allowed the kernel developers and testers to analyze the correctness 

and security of each layer independently and to be sure that there were no complex 

interactions between kernel components that might jeopardize system security. Table 3 

contains the name of each layer and a brief description from [Ref. 8].   . 

The designers of the VMM security kernel realized that highly-secure systems are 

often hard to use because of their limited interfaces. Interface features are large and hard 

to verify, preventing them from being included in the kernel. To overcome this problem, 

the designers created two separate command sets: server commands and administrative 

commands. The secure server commands are all implemented in trusted code. These 

commands include those that control terminal connections to virtual machines. Some of 

these commands are CONNECT, DISCONNECT, RESUME, and SHOW SESSIONS. 

The SECURE, or administrative commands, are commands that help manage the system. 

These commands are issued and parsed in a VMOS. 

A major goal of this development effort' was to receive a Class Al rating under 

the TCSEC. In addition, the designers were also interested in achieving good overall 

performance and compatibility with a large amount of existing software. This second 

goal was motivated because no Class Al system, including Honeywell's STOP kernel for 

the SCOMP [Ref. 4] and Gemini Computers' GEMSOS [Ref. 5], had ever been built that 
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was compatible with an existing body of application software. Even after the 

modification of the processor microcode, the VAX security kernel only allowed virtual 

machines to run at 47-48% of their performance on a real machine. Although the project 

was canceled before many performance enhancements could be tested, DEC admitted that 

major improvements in performance would be difficult without modifying the microcode 

of the processor or the operating systems that run in the virtual machine [Ref. 10]. 

DEC's efforts did lead to several conclusions about virtualization: 

1) Every ring of a processor can be emulated, but this is often not necessary. 

2) Emulating a start I/O instruction is simpler and cheaper than emulating memory- 

mapped I/O. 

3) Defining the VM as a particular processor or family of processors makes the 

VM more portable than if it were a reflection of the actual hardware. For 

example, if a VM is defined to be a Pentium processor, the VM will work on a 

Pentium II or Pentium III processor. 

4) Performance of a VM suffers when sensitive instructions must be made to trap 

to emulation software. 

5) There are alternatives to modifying the microcode support for every privileged 

instruction to meet the needs of the VMM. 

6) If a VMM is a security kernel, handshakes between the VMM and VM's must 

be scrutinized because the VMM can not trust the VM operating systems. 

These conclusions should be considered in any attempt to design a secure Type I 

VMM for the Intel Pentium architecture. 

B.        HOW SECURE IS THE INTEL ARCHITECTURE? 

The 80x86 architecture (including Intel and clones) was clearly the choice for trusted 

systems during the 1980's and early 1990's. Some of the high-assurance trusted products 

that used the 80x86 processors were the Boeing MLS Lan (Al) [Ref. 13], Gemini Trusted 

Network Processor (Al) [Ref. 5], Verdix VSLAN (B2) [Ref. 14], TIS Trusted 
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Layer Name 

Users 

Definition 

VMOS 
Secure Server 

Virtual VAX 

Kernel Interface 

Virtual Printers 

Includes untrusted application programs that run on the 
VMOS and humans who communicate with the secure 
server through the trusted path 
The virtual machine's operating system 
Implements the trusted path for the security kernel, logs 
users in and out, provides security-related administrative 
functions; everything above this layer is untrusted 
Completes the virtualization process by emulating sensitive 
instructions and delivering interrupts and exceptions to the 
virtual machine 
Implements virtual controllers for virtual I/O devices and the 
security function controller 
Implements virtual printers for each VM and multiplexes the 
real physical printers among virtual printers 

Virtual Terminals Implements virtual terminals for each VM and manages 
physical terminal lines 

Volumes 

Files-11 Files 
Auditing 
Higher-Level Scheduler 

VM Virtual Memory 

VM Physical Memory 

I/O Services 
Lower-Level Scheduler 

Hardware-Interrupt Handler 

Implements VAX security kernel and exchangeable volumes 
and provides registries of all subjects and objects 
Implements a subset of the ODS-2 file system' 
Provides the facilities for security auditing and alarms 
Creates the abstraction of level-two virtual processors 
(vp2s); dedicated vp2s are used by the Secure Server layer 
and bindable vp2s are used by virtual machines 
Implements the shadow page tables that are needed to 
support virtual memory in virtual machines 
Manages real physical memory and assigns it to virtual 
machines 
Implements device drivers that control the real I/O devices 
Creates the abstraction of level-one virtual processors (vpls) 
that are the basic unit of scheduling for the system; vpls are 
intended to be very inexpensive processes for use within the 
kernel 
Immediately above the VAX hardware and modified 
microcode; contains the interrupt handlers for the various I/O 
controllers and certain CPU-specific code 

Table 3. Layers In The VAX Security Kernel Design. 

4 A summary of the Files-11 ODS-2 structure can be found in the appendices of a DEC publication [Ref. 12]. 
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Xenix (B2) [Ref. 15], and the XTS-300 (B3) [Ref. 4]. 

1. Hardware Rings 
The four rings of the Intel architecture are a benefit to secure development. Rings 

are a generalization of the original supervisor/user design for hardware. Some of the 

benefits of hardware rings as described in [Ref. 16] are: users can create arbitrary, 

protected subsystems that can be used by others; system or kernel code can be 

implemented in layers that are enforced by the hardware; and the user can protect himself 

while debugging his own programs. Creating protected subsystems allows a reference 

monitor as described by Anderson in [Ref. 17]. Any secure VMM must be both 

tamperproof and non-bypassable. Since the Intel processor protects operating system 

code, one can be assured that a VMM can not be tampered with. Additionally, if a VMM 

is designed to be non-bypassable, one is assured that the VMM will always be invoked. 

The second benefit of rings is that a layered kernel can be implemented with 

hardware rings. A layered kernel has many security advantages. It limits the propagation 

of errors, making a secure implementation easier to achieve. For example, changes in 

ring 1 of a TCB or OS would not effect the kernel that has already been certified at ring 0. 

However, for performance reasons, all layers of a kernel are normally in ring 0. 

2.        Operating System Design Issues 
Typically, much more emphasis has been placed on assurance of a system's 

software components rather than its hardware components. The hardware components of 

a system are often assumed to operate securely if they are used correctly. However, this 

may not always be the case. This section discusses "pitfalls" of the Intel architecture that 

were discovered by Sibert et al. in [Ref. 18]. System designers for the Intel architecture 

should consider these when implementing secure operating systems because they can lead 

to security problems if handled incorrectly. 

As a result, Sibert et al [Ref. 18] conducted an in-depth analysis of the 80x86 

processor families (included Intel and other clones) to look for any architectural 

properties that could have "unexpected, and undesirable, results in a secure computer 

system."    Although the authors did not find any "gross security flaws," they did find 
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several features that introduce previously unreported covert channels and other problems 

in the Intel architecture. 

One potential security problem that the authors found is undocumented 

instructions. At the time of their examination, Intel had an Appendix H to their 

programming manual that contained functions that were explicitly undocumented and 

available only under strict non-disclosure protection. It was not possible for the authors 

to test these undocumented features. 

The architectural "pitfalls" that were identified in this paper are not security flaws 

in the processor. The pitfalls are problems that can cause security flaws in a system if the 

operating system does not correctly handle the pitfalls. For example, in many cases, if a 

TCB virtualized the register that causes a pitfall, a covert channel would be closed. Most 

of the pitfalls that were discussed allow possible covert channels, both timing and 

storage. A covert channel is a mechanism used to transfer information from one process 

to another that is not intended to transfer information [Ref. 19]. If a covert channel 

exists, a high subject can signal a low subject and bypass the security policy enforcement 

mechanism. These pitfalls included the TS flag, FPU context, segment accessed bit, 

segment attributes, page access visibility, internal register visibility, debug register 

values, time stamp counter, performance counter, cache and TLB, and undefined values. 

Sibert et al. discussed each of these pitfalls in [Ref. 18]. Many of these pitfalls were 

identified in very early versions of the Intel processor such as the 386 and 486. However, 

most of these pitfalls still exist in the current Pentium architecture because Intel has 

remained backward compatible all the way to the 8086, a processor developed in the late 

1970's. 

An example of a pitfall that still remains today is the TS bit of control register 0. 

The SMSW instruction stores the lower 16 bits of control register 0 and makes the TF 

flag visible.   Sibert et al describe a detailed example of a channel using the TF flag. 

A variation of this pitfall is also still present in the Intel Pentium architecture. As 

mentioned, the TS bit is visible to unprivileged tasks.  However, even if the bit was not 
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visible, the state of the bit could be determined by the duration of a floating point 

instruction. The TS flag helps minimize the number of times the FPU state must be 

saved. If the current task was the last task to use the FPU, the state of the FPU does not 

need to be saved. However, if a new task is using the FPU, the state of the FPU must be 

saved and the FPU is re-loaded from the current task's FPU context. If the FPU is saved 

and then re-loaded, it will take much longer than if these actions were not necessary. 

Thus, information flow is possible between two tasks because of the optimization of the 

FPU context-saving process. 

In addition to the pitfalls just described, Sibert et al. [Ref. 18] also describe some 

of the 102 reported flaws on different versions of the Intel 80x86 architecture. Most of 

these flaws would probably not translate into exploitable security flaws. However, some 

of the flaws did. The authors gathered 102 reports of flaws, 17 of which are security 

relevant. Nine of the flaws were denial of service flaws that could halt the processor. All 

of the flaws were found on the Intel Pentium and earlier processors. The analysis showed 

that Intel did fix most of these problems in each subsequent processor release. However, 

current Intel processors may have new flaws that are security relevant. 

C.        THE SECURITY OF INTEL VISUALIZATION 

Since the Intel Pentium architecture is not truly virtualizable, a bit of "trickery" is 

required in order to make a "virtual" VMM run on the architecture. The trickery is 

required to detect any instructions that are sensitive but not privileged before they are 

executed by a VM. Several different techniques could be used to accomplish this. I will 

describe the techniques that Lawton has proposed [Ref. 20]. 

1. Pure Emulation 
The first technique is pure emulation. Emulation is a technique that maps one 

system architecture into another system architecture. By modeling a large part of the x86 

instruction set in software, emulation allows x86 operating systems and applications to run 

on non-x86 platforms. Lawton is the leader of a software project called Bochs [Ref. 21]. 

Bochs emulates a majority of the x86 CPU, related AT hardware, and a BIOS and is able to 
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run DOS, Windows '95, Minix 2.0, and other x86 operating systems on both x86 and non- 

x86 platforms. Some of the architectures that Bochs can run on include Sparc, PowerMac, 

SGI, and x86. Bochs is able to run approximately 1.5MIPS on a 400Mhz PII Linux 

machine. Bochs is closer to a complete software interpreter machine than a VMM. The 

disadvantage of using this technique to virtualize the Intel architecture is significant 

performance degradation since no instructions are ever executed directly on the hardware. 

There are some advanced techniques,. such as dynamic translation, which can improve 

performance. Dynamic translation allows sequences of small, Intel architecture code to be 

translated into native-CPU code "on-the-fly." Since the native code is cached, it can run 

significantly faster. However, the performance will never achieve that of a Type I VMM. 

2. OS/API Emulation 
A  second  technique proposed by  Lawton is  OS/API  emulation  [Ref.   20]. 

Applications normally communicate with an operating system with a set of APIs. OS/API 

emulation involves intercepting and emulating the behavior of the APIs using mechanisms 

in the underlying operating system. This allows applications designed for other x86 

operating systems to be run. This strategy is used in a project called Wine. Wine is "an 

implementation of the Windows 3.x and Win32 API on top of X and Unix" [Ref. 22]. Wine 

has a program loader that allows unmodified Windows 3.1/95/NT binary files to run on 

Intel x86-based Unix machines, such as Linux, FreeBSD, and Solaris. Wine allows 

application binaries files to run natively, meaning that Windows executable files can be run 

in Unix environment without modification. Running binaries natively allows better 

performance than the pure emulation technique described above. However, OS/API 

emulation only works on members of the x86 OS family for which the APIs have been 

emulated. Furthermore, OS/API emulation is very complex. A VMM is less complicated 

and requires less change as an OS evolves from release to release. 

3. Virtualization 
A third technique is virtualization. Most hardware is only designed to be driven 

by one device driver. The Intel Pentium CPU is not an exception to this rule. It is 

designed to be configured and used by only one operating system.    Features and 
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instructions of the processor designed for applications are generally not a problem for 

virtualization and can be executed directly by the processor. A majority of a processor's 

load comes from these types of instructions. However, certain sensitive instructions are 

not privileged in the Intel architecture, making it very difficult for a VMM to detect when 

the instructions are executed. A strategy for virtualizing the Intel architecture would be 

as follows5: 

1) Non-sensitive, unprivileged'application instructions can be executed directly on the 

processor with no VMM intervention. 

2) Sensitive, privileged instructions will be detected when they trap after being executed 

in user mode. The trap should be delivered to the VMM that will emulate the 

expected behavior of the instruction in software. 

3) Sensitive, unprivileged instructions present a problem because the processor does not 

offer natural hardware protection against them. They must be detected so that control 

can be transferred to the VMM. 

The hardest part of the virtualization strategy described above is protecting 

against the seventeen problem instructions that were described in Chapter III. Lawton 

describes how this is accomplished for FreeMWare [Ref. 20]. It analyzes instructions 

until one of the following conditions is encountered: 

1) A problem instruction. 

2) A branch instruction. 

3) The address of an instruction sequence that has already been parsed. 

If case 1 or 2 is encountered, a breakpoint must be set at the beginning of the 

problem or branch instruction. If case 3 is encountered, execution continues as normal 

since this code has been analyzed already and necessary breakpoints have been installed. 

5 This is probably the strategy that VMware used in order to virtualize the Intel architecture. Lawton, the author of 

the Bochs software, is also leading an effort to create an open source version of VMware. The title of this project 

is called FreeMWare [Ref. 20]. 
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Code is allowed to run natively on the processor and it continues to run until it 

reaches a breakpoint. If the breakpoint occurred because of a problem instruction, its 

behavior is emulated by the VMM. If the breakpoint occurred because of a branch 

instruction, it is necessary to single step through its execution and begin analyzing 

instructions again at the branch target address. If the target address is not computed and 

has already been analyzed and marked as safe, then the branch instruction can also be 

marked as safe and it can run natively on the processor on subsequent accesses. 

Computed branch addresses require special attention. These instructions must be 

dynamically monitored to ensure that execution does not branch to code that has not been 

analyzed. A table might be used to keep track of the breakpoints. It might include the 

type of condition for which the breakpoint was set: a problem instruction, a branch 

instruction, or the address of an instruction that has already been parsed. 

Lawton's strategy also accounts for the possibility that some instructions may 

write into memory, possibly into the address of instructions that have already been 

analyzed and marked as safe. The paging system is used to prevent this by write 

protecting any page of memory in the page tables that has already been analyzed and 

marked as safe. All page entries that point to the physical page with analyzed code would 

have to be write protected since multiple linear addresses can be mapped to the same 

physical page. When a write-protect page fault occurs, this gives the VMM the 

opportunity to unprotect the page and step through the instructions. If a problematic 

instruction is written into a page while stepping through instructions, a breakpoint should 

be installed before that instruction. Finally, the page should be write-protected again. In 

cases where instructions cross a page boundary, both pages are write-protected and the 

modified code will be handled in both pages. Tables are used to track which instructions 

have been analyzed. The tables use the page size for performance reasons. Lawton 

describes more details of how FreeMWare is being implemented in his paper [Ref. 20]. 

Some of the issues discussed include: pass-through I/O devices, timing issues, 

virtualizing descriptor loading. Each of these are described below: 
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a. Pass-Through I/O Devices 
A guest OS  can only use devices that are provided to it by the 

virtualization environment. Thus, a guest OS will not be able to use hardware that is not 

supported by a host OS driver. However, it may be useful to allow a device driver in the 

guest OS to drive hardware for a device that is not supported by the host OS. For 

example, a Linux host OS will not support a Winmodem. This means that a VM running 

Windows that runs Linux as its host OS can not use a Winmodem since it is not 

supported by the host OS. A solution to this is called pass-through devices. Pass-through 

devices could allow a guest OS to communicate with devices using a pass-through 

mechanism that handles I/O reads and writes. It is difficult to implement pass-through 

I/O devices securely because control of the real hardware control is turned over to the 

VMOS. 

b. Timing 
A VMM for the Intel architecture must also consider timing issues.  The 

VMM must accurately emulate the system timers. Every time slice of native code 

execution is bounded by an exception that is generated by the system timer. This 

exception means that the execution time slice is over. The exception vectors to a routine 

that is defined in the VMM's IDT for a guest OS. A mechanism is needed that measures 

the time between these exceptions to emulate an accurate timer. On Intel Pentium 

processors and later, performance monitoring could be used. The RDTSC, Read Time 

Stamp Counter, instruction gives an accurate time stamp reading that can be used. The 

instruction is also executable in CPL 3, allowing efficient use in user-level VMM code. 

c. Virtualizing Descriptor Loading 
A VMM for the Intel architecture must also have its own set of LDT, 

GDT, and IDT tables. These are necessary for two reasons. First, it allows the segment 

register mechanisms to work naturally. Second, it allows the VMM to have its own set of 

exception handlers. A time slice is up when the system timer invokes a routine in the 

private IDT. When this occurs, the VMM must revert back to the tables that are used by 

the host OS, meaning that the host OS is not aware of the virtualization environment. 
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Since all privilege levels (0-3) in a VM are mapped into CPL 3, the CPL is not 

high enough when trying to load code that is less than CPL 3. CPL 3 code can load 

descriptors as expected as long as the GDTR and LDTR registers point to the guest OS's 

descriptor tables. When running system code in CPL 3, exceptions are generated when 

loading a descriptor with that has CPL < 3. This does not occur when system code is 

executed at CPL 0 as it expects. In order to solve this problem, one must trap and 

emulate instructions that load the segment registers when running at CPL < 3. One must 

also virtualize all instructions that examine segment registers with PL < 3 because they 

may look at the RPL field which will not reflect the expected privilege level. 

Another technique that will help solve this problem is the use of a private GDT 

and LDT for the virtualization of code at CPL < 3. Since, the instructions that reference 

the GDTR and LDTR are emulated, they can be loaded with values that point to the 

private GDT and LDT. The private descriptor tables would start out empty and generate 

exceptions when a segment register loads. Each time this happens, a private descriptor is 

generated that allows the next segment register load to execute natively. Every time the 

GDTR and LDTR are reloaded, the private descriptor tables are cleared. 

D.        ADDITIONAL INTEL VIRTUALIZATION INSIGHTS 

In addition to the details of the FreeMWare project, another useful resource on 

how Intel virtualization may be accomplished is the Disco prototype, mentioned in the 

introduction to this thesis. Disco was developed at Stanford University on the Stanford 

FLASH shared-memory multi-processor. [Ref. 2] The Disco project is an implementation 

of a Type I VMM for the Flash multi-processor. It runs several different commercial 

operating systems in virtual machines to provide high-performance system software. 

Much like VMware, Disco was able to overcome the high overhead and poor resource 

sharing that is typical of both Type I and Type II VMMs. Some of the key insights of the 

Disco implementation that would be applicable to virtualizing the Intel Pentium 

architecture are described here. 
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1. Virtual CPUs 
Since most machines only use one processor, multiple VM's running on the same 

hardware each have a virtual processor. This is an abstraction to make each VM and its 

associated VMOS think that it has the sole use of the real processor. In order to schedule 

a virtual CPU for a VM, the VMM needs to set the real machine's registers to those of the 

virtual CPU and jump to the program counter of the virtual CPU. A data structure is kept 

for each virtual CPU that contains register contents, TLB contents, and other state 

information of the virtual CPU when it is not running on the real CPU. If a virtual CPU 

is running on the real CPU, a VM trap, such as a page fault, system call, or bus error, 

causes the monitor to emulate the effect of the trap on the currently scheduled virtual 

processor. After the currently scheduled VM's time slice is up, the virtual processor 

information is saved and the next virtual processor is swapped into the real processor. 

2. Virtual Physical Memory 
To virtualize physical memory, an extra level of address translation is added. 

This level maintains VM physical-to-machine address mappings. Virtual machines are 

given physical addresses that start at address zero and continue to the size of the VM's 

memory. These physical addresses could be mapped to machine addresses used by the 

Intel processor using the hardware-reloaded TLB of the Intel processor. The VMM 

manages the page table and does not allow the VM to insert entries in it. When the 

VMOS tries to insert a virtual-to-physical mapping in the TLB, the VMM emulates this 

by translating the physical address into the corresponding machine address and inserting 

this into the TLB. 

3. Virtual I/O Devices 
The VMM must intercept device accesses from virtual machines and forward 

them to physical devices. Instead of trying to use every device's real device driver, it is 

easier to use one special device driver for each type of device. Each device has a monitor 

call that is used to pass all command arguments to the VMM in a single trap. Many 

devices such as disks and network interfaces require direct memory access (DMA) to 

physical memory.   Normally these device drivers use parameters that include a DMA 
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map. The VMM must intercept these DMA requests and translate physical addresses into 

machine addresses. 

4. Virtual Network Interface 
In order for VM's to communicate with each other, they use standard distributed 

protocols such as NFS. Disco manages a virtual subnet that allows this communication. 

The virtual subnet and networking interface used a copy-on-write strategy for transferring 

data between VMs to reduce the amount of copying. Virtual devices use ethernet 

addresses and do not limit the maximum transfer unit of packets, resulting in much faster 

communication. 

E.        PROBLEMS WITH CURRENT INTEL VMMS AND MANDATORY 
SECURITY ENFORCEMENT 

If a computer system is to be a high-assurance secure computing system, it must 

be able to enforce security policies correctly, even under hostile attack. Examples of this 

type of system are those that are at least Class B2 or an equivalent level in the Common 

Criteria [Ref. 23]. Additionally, the systems' protection mechanisms must be structured 

and well-defined. In both an open and closed environment, the Yellow Book [Ref. 9] 

states that a system must be Bl or higher in order some users that access a system are not 

authorized for all categories. Even if Yellow Book requirements are not followed, two 

requirements should be met when dealing with classified information. First, labels are 

required when dealing with classified information. Second, for environments with 

multiple user clearances, a very effective protection mechanism is needed. 

Current VMMs for the Intel architecture, such as VMware and FreeMWare, do 

not meet these requirements and they have never been evaluated as secure products 

(although a product does not have to be evaluated to be secure). Even though neither is 

designed to be secure, VMware does claim that their product can "isolate and protect each 

operating environment, and the applications and data that are running in it" [Ref. 7]. 

They also say that they do "not make any assumptions concerning the software that runs 

within the virtual machine. Even a rogue application or operating system is confined to 
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the VMware Virtual Platform." Given these claims, it is worthwhile to determine how 

well current VMMs can enforce isolation between VMs to support a mandatory security 

policy. It should be noted that the following analysis is based on assumptions of how 

VMware is accomplishing virtualization. The following sections describe some of the 

potential problems that would arise if VMware was to be used to separate mandatory 

security levels. 

1. Resource Sharing 
One of the simplest problems results from resource sharing between virtual 

machines. If two virtual machines have access to a floppy drive, information can flow 

from one VM to the other. This could be accomplished by simply copying files from the 

VM to the floppy so that other VM's could also access the files. 

2. Networking and File Sharing 
Another similar problem results from VMware's support of networking and file 

sharing. Using this support, two virtual machines at different security levels could 

communicate information to each other in a variety of ways. Some of these include 

Microsoft Networking, Samba, Novell Netware, Network File System, and TCP/IP. For 

example, using TCP/IP, a VM could FTP to either a host OS or guest Linux OS and 

transfer files. 

3. Virtual Disks 
VMware's ability to use virtual disks is also a problem. A virtual disk is a single 

file that is created in the host OS and used to encapsulate an entire disk, including an 

operating system and its applications. With this ability, anyone with access to this file in 

the host operating system could copy all of the information in this virtual disk to any 

sufficiently large type of external media. Once an attacker had the file, he could install 

VMware on his own operating system and open the virtual disk that contains all of the 

information. 

Another problem with the virtual disk is that any OS application with read access 

to the file that contains the virtual disk in the host OS can examine the contents of all of 

the information on that virtual disk.   For example, using Linux as the host operating 
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system, file utilities such as grep can be used to search for a specific string in the virtual 

file system. To test this vulnerability, Windows NT was booted as a VMware-supported 

guest OS on a Linux host OS. In NT, a text file with a known string such as "Top Secret 

Data" was created. Using the Linux host operating system, the grep command was used 

to search for this string in the approximately 300 MB virtual disk. The search succeeded 

in seconds. A solution to both this and the previous problem would be to not allow 

unauthorized users access to this virtual file. However, this would require a secure host 

OS. 

4. Program Utilities 
There is an alternative way to access data in a VMware virtual disk.   VMware 

provides a utility called vmware-mount for a Linux host operating system. This utility 

allows virtual disks to be mounted as if they were regular hard disk partitions. Thus, if a 

user has permission to read a virtual hard disk file, the user can mount the disk and read 

file that it contains. The current version of this utility does not allow a virtual hard disk 

to be read and written at the same time. This means that this utility would only work if 

the virtual disk it is trying to access is not currently being used by a virtual machine. 

One of the biggest security issues in VMware comes from another tool that it 

provides called VMware-Tools. VMware-Tools are available for each different type of 

guest operating system. These tools provide several nice features to support 

interoperation between virtual machines. Any user with the ability to run VMware can 

install the VMware tools in their virtual environment. For example, after installing 

VMware-Tools in a guest OS, the cursor can move freely between the host OS desktop 

and those of the VMs that are running as applications under of it. Another feature that 

these tools provide is the ability to cut and paste between virtual machines using 

something similar to the Windows clipboard. Text from any type of virtual machine can 

be copied and pasted into another virtual machine. It is not difficult to see the potential 

security danger if virtual machines were running at different mandatory security levels 

and information could be passed between windows. 
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5. Host Operating System 
A host of security vulnerabilities emerge since both of the potential host operating 

systems for VMware (Linux and Windows NT) are weak platforms. Both of these 

operating systems have many of the features of a Class C2 operating system. However, 

the current versions of both of these operating systems have never been evaluated as such. 

Additionally, Class C2 systems do not enforce MAC policies. Since the security of 

VMware and its guest operating systems are a layer above the underlying operating 

system, it can not be expected to be any more secure than the least secure layer it depends 

on. 

A security vulnerability in the VMware interface was announced on June 22nd, 

1999. VMware was notified of a security problem in the first release: VMware for Linux 

version 1.0.1 (and all previous releases). The security hole allows a buffer overrun 

attack to result in unprivileged root access to the Linux host operating system. To exploit 

the security hole, a user must start VMware. Although the security alert does not 

describe how to exploit the hole, it does say that it must be done before powering on a 

virtual machine. Multi-user Linux systems with VMware installed would be affected the 

most by this attack. However, since this attack captures the whole system, no guest OS is 

safe either. A user of the system could execute the attack to gain root access on the 

machine. Once root is obtained, the user would be free to do anything he pleases. 

6. Serial and Printer Ports 
Another security problem in VMware occurs in the implementation of serial and 

printer ports. Before starting up a virtual machine, a configuration of the guest OS must 

be loaded or created. One of the options for parallel and serial ports in this configuration 

is for output of all parallel/serial ports to go to a file in the host operating system. If a 

printer is configured in the guest OS, the output will be sent to a file in the guest OS 

when the user tries to print something. This could be an easy way for users to transfer 

information from a high security class into the host OS. Anyone on the system could 

read the printer file in the host OS if its permissions were public. 
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F.        A BETTER APPROACH FOR USING AN INTEL VMM TO SEPARATE 
MANDATORY SECURITY LEVELS 

As the previous section demonstrated, current VMMs for the Intel architecture 

should not be used to separate mandatory security levels. Furthermore, it would not be 

wise to try to implement a high assurance virtual machine monitor (greater than B2) as a 

Type II VMM. This is because a Type II VMM must still operate in a host operating 

system. This means that a new highly secure host operating system for the Intel Pentium 

architecture would also have to be written. Layering a highly secure VMM on top of an 

operating system that is clearly not penetration resistant and the security controls of 

which can be circumvented would not provide a high level of security. This is because 

flaws in the underlying operating system could likely be exploited that would allow the 

security in the Class B2 or greater VMM to be bypassed. 

A better approach to designing a VMM for the Intel architecture would be to build 

a Type I VMM as a microkernel. The Type I VMM would provide virtual environments 

on the machine. The VMM would intercept all attempts to handle low-level hardware 

functions from the VMs. Thus, the VMM would control all of the devices and system 

features of the CPU. The VMM would detect these attempts to use low-level hardware 

functions and transparently emulate their behavior for the virtual machine. The 

microkernel could allow each VM to choose among a specific set of devices. The devices 

may or may not be the real set of devices that are installed on the system. 

There are two advantages to using a Type I VMM to separate mandatory security 

levels. First, a Type I VMM can provide a high degree of isolation between VMs. 

Second, all existing operating systems for the processor and their applications can be run 

in this highly secure environment without modification. 

The biggest disadvantage to a Type I approach is that device drivers must be 

written for every device that needs to be used by the system. This is a problem because 

there are many different types of peripherals that can be hooked up to a system. 

Furthermore, each peripheral has many different manufacturers and each manufacturer's 
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product requires different drivers. A Type II VMM does not have this problem because it 

simply uses the drivers that are already written for the host OS. This disadvantage can 

be overcome when developing a secure solution by only supporting certain types and 

manufacturers of devices. For example, VMM designers may decide that they do not 

want the ability to hook up parallel disk drives to the system. Therefore, no drivers for 

parallel port drives need to be written. Additionally, drivers would not have to be written 

for all manufacturers of a particular device. For example, the designers could restrict 

supported printers to a particular type from a particular manufacturer. It is not out of the 

ordinary for highly secure solutions to require specific types of hardware. 

If the secure VMM was implemented as a Type I VMM, the secure microkernel 

could be very small. This would make it easier for the VMM to meet the Reference 

Monitor verifiability requirement. For example, the VAX security kernel was only about 

50,000 lines of code. Sufficient attention to constraining information flow between VMs 

combined with engineering inspection and testing techniques sufficient to demonstrate 

the absence of trap doors in the VMM would result in a secure VMM. 

A tremendous advantage to using the VMM approach to separate mandatory 

security levels is that popular commercial operating systems and applications could be 

supported. It may be difficult to convince commercial software companies to port their 

software to a new platform if the market will be small. A VMM eliminates the need to 

port software and allows all of the functionality that computer users are used to having on 

their own desktop. This saves a tremendous amount of development and cost. 

Before trying to implement a secure Type I VMM for the Intel architecture, it 

might be advantageous to convince a chip manufacturer to slightly modify the Intel 

Pentium architecture for the project. Two alternative modifications to the processor 

could make virtualization easier. First, all seventeen unprivileged, sensitive instructions 

of the Intel architecture could be changed into privileged instructions. This would make 

virtualization easier because the VMM would no longer have to look ahead for possible 

sensitive instructions.  All instructions would naturally be able to trap so that the VMM 
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could emulate the behavior of the instruction. However, this solution may cause 

problems in current COTS operating systems because instructions that were non- 

privileged will now trap when they did not previously. 

The second alternative is to implement a trap on op-code instruction. [Ref. 1] This 

solution adds a new instruction to the architecture that allows an operating system to 

declare instructions that should be treated as if they were privileged. This alternative 

makes virtualization easier without affecting current COTS operating systems. 

If one of the alternatives described above is not implemented, virtualizing the 

Intel architecture is much harder. This is because additional code is required to force 

sensitive, unprivileged instructions to trap so that they can be handled by VMM software. 

The additional code raises two security concerns. First, the security kernel may not be 

considered minimal because of the extra virtualization code. Second, virtualization of the 

unmodified processor requires checking every instruction before it executes to determine 

if it is one of seventeen problem instructions. If undocumented instructions exist, the 

VMM may not operate as expected because it will not recognize an undocumented 

instruction. Furthermore, if an undocumented instruction, or sequence of instructions, 

exists that cause the processor to transition into an insecure state, an attacker may be able 

to bypass the VMM.6 

Modifying the problem instructions of the Intel architecture or adding a trap on op- 

code instruction will make a Type I VMM more secure and easier to build. The Intel 

architecture has many features that can be used to implement highly secure systems. The 

best way to implement a secure VMM on the Intel architecture would be to build a new, 

high assurance Type I VMM on a slightly modified processor. Even though device drivers 

6 To ensure that a completely secure solution can be built on the Intel architecture, it is necessary to have some sort 

of guarantee that these instructions or sequences of instructions do not exist. It has already been discovered that 

Intel has undocumented instructions in their architecture. Dr. Dobbs' Journal [Ref. 24] illustrates several 

undocumented instructions including UMOV (User Move Data), LOADALL (loads the entire CPU state), ICEBP 

(ICE Breakpoint), and SALC (Set AL on Carry). 
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will have to be written, a Type I VMM will be more secure and easier to verify than a Type 

II VMM implementation on a low assurance operating system. 
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VI. CONCLUSION 

This thesis explored the feasibility of implementing a secure virtual machine 

monitor on the Intel Pentium architecture. The thesis began by covering the types of 

virtual machine monitors and their hardware requirements as described by Goldberg. 

Then, a detailed study of the Intel architecture was done to see if it could meet the 

hardware requirements of any type of VMM. A large part of this study involved looking 

at approximately 250 instructions in the Intel architecture to determine if they are 

virtualizable. The analysis showed that seventeen instructions did not meet Goldberg's 

requirements because they were sensitive and unprivileged. 

Even though the Intel architecture is not truly virtualizable, a product exists that 

provides something similar to a Type II virtual machine for the Intel architecture. This 

class of VMM was examined to determine how a VMM can run on an architecture that is 

not virtualizable. The analysis showed that this effect may be accomplished by 

examining all instructions before they are executed. If a problem instruction is found, the 

VMM patches the instruction with code that will force a trap to the VMM. The VMM is 

then able to emulate the proper behavior of the instruction. 

After defining a strategy that can be used to "virtualize" the Intel architecture, an 

analysis was conducted to determine whether a secure virtual machine monitor could be 

built for the architecture to separate classified from unclassified information. The VAX 

Security Kernel was described to give an example of a secure virtual machine monitor. 

We conclude that current VMM products for the Intel architecture should not be used as a 

secure virtual machine monitor, even though some vendors claim security as a feature 

[Ref. 25]. One of the VMM products claims that virtual machines are isolated in a way 

that prevents them from affecting each other or the host operating system. However, 

since the product resides on top of an operating system that is not secure, it can not 

provide a high enough degree of isolation to protect information in a multilevel 

environment. 
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The best way to separate mandatory security classes when supporting virtual 

machines would be to build a new, secure Type I VMM on the Intel architecture. The 

Intel architecture has features that can be used to implement highly secure systems. 

There are many advantages to building a highly secure VMM on the Intel architecture. 

First and most important, this solution allows high security while providing a platform 

that is compatible with existing popular COTS operating systems and applications. 

A.       FUTURE WORK 

Three additional areas of research could supplement the work contained in this 

thesis. First, one might design a secure Type I VMM for the Intel Pentium architecture. 

The design should consider the "pitfalls" that were mentioned in Chapter V of this thesis. 

Second, future work could include analyzing how the source code from the 

FreeMWare project (when it is available) could be changed to implement a secure Type I 

VMM. Even though the FreeMWare project is a Type II VMM, a significant amount of 

the code could probably be used to begin the effort. 

Third, it would be useful to look at the Intel IA64 architecture and determine how 

its new features help or hurt virtualization. It is rumored that the architecture will have 

five rings, allowing any Intel processor from the 8086 to the Pentium III to be virtualized 

in its four outer rings. 
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APPENDIX A. INTEL PENTIUM HI ARCHITECTURE REVIEW 

A. ARCHITECTURE 

In order to discuss whether the Intel Pentium processor is capable of supporting a 

secure VMM, I must give a brief overview of the Pentium architecture. For more 

detailed information, see the Intel manuals [Ref. 6,26, 27]. 

Figure 9 illustrates the Pentium Pro processor architecture. The architecture has 

five subsystems: memory, fetch/decode unit, instruction pool, dispatch/execute unit, and 

the retire unit. 

B. MEMORY MODELS 

The address space for physical memory is organized as a long sequence of 8-bit 

bytes, each having a unique address. When programs use the processor's memory 

management capabilities, they do not directly address physical memory. Instead, they 

use one of three memory models illustrated in Figure 10. 

In the flat memory model, memory is a single, contiguous address space. The 

code, data, and procedure stacks are all contained within this space and are byte- 

addressable. In the segmented memory model, memory is a group of independent 

address spaces called segments. Code, data, and stacks are contained in separate 

segments that are up to 232 bytes in size. A logical address, consisting of a segment and 

an offset, is used to address a byte in a segment. The segmented memory model increases 

the reliability of programs and systems by separating code, data, and stack segments. For 

example, it prevents a stack segment from being able to "grow" into code or data space 

and thus overwrite instructions or data. Furthermore, separating OS code, data, and stack 

segments from application segments protects OS segments from application segments 

and vice versa. The third memory model is the real-address model which was used in the 

8086 processor. It is a specific implementation of the segmented memory model where 

segments are only 2'6 bytes (64K) each. 
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Figure 9. Pentium Pro Processor Microarchitecture From Ref. [26]. 
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C.       EXECUTION ENVIRONMENT 

All programs or tasks running on the Intel architecture have a set of resources to 

execute instructions and store code, data, and state. These resources include are in the 

table below. 
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Resource Size Quantity Name(s) 

General-Purpose Registers 32-bit 8 EAX, EBX, ECX, EDX, ESI, EDI, 
EBP, ESP (E = extended) 

Segment Registers 16-bit 6 CS, DS, SS, ES, FS, GS 
EFLAGS Register 32-bit 1 EFLAGS 
EIP (Instruction Pointer Register) 32-bit 1 EIP 
Address Space 0-232 bytes 1 N/A 

Table 4. Intel Program Resources. 

The Intel Pentium's execution environment has three operating modes. First, 

protected mode has all of the instructions and architectural features of the processor 

available to it. This mode has the most capability of the three and can use any of the 

three memory models described in the previous section. To execute 8086 software, 

protected mode is used to create a "virtual-8086" mode. This mode is not considered one 

of the three operating modes of the processor, but allows 8086 software to run in a 

protected, multi-tasking environment. 

The second processor mode is the real-address mode. This mode provides the 

programming .environment of the 8086 processor with a few added capabilities. In this 

mode, the processor only supports the real-address memory model. The major difference 

between real-address mode and virtual-8086 mode is that the virtual-8086 mode uses 

some protected mode services such as protected mode interrupt handling, exception 

handling, and paging. 

Finally, the third mode is system management mode. This mode provides an 

operating system a transparent mechanism to implement functions such as power 

management and system security. In this mode, the processor switches to a separate 

address space called the system management RAM and saves the context of the current 

program or task. System management mode uses a memory model similar to the real- 

address memory model. 

System management mode (SMM) is designed to handle system-wide functions 

such as power management, system hardware control, or proprietary OEM-designed 
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code. It is intended for use only by system firmware, not by application software or 

system software. SMM offers a distinct, isolated processor environment that operates 

transparently to an OS and its applications. To start system management mode, a system 

management interrupt (SMI) is signaled. The SMI is a nonmaskable, external interrupt 

that is unlike the processor's normal interrupt and exception mechanism. After invoking 

the system management interrupt, the processor saves its current state and switches to a 

separate operating environment in system management RAM. It then executes system 

management interrupt handler code before switching back to the previous processor state. 

The system management mode does not use privilege levels or address mapping and is 

capable of addressing up to 4 gigabytes of memory. It can also execute all I/O and 

system instructions. 

D. EFLAGS REGISTER 

The Intel architecture has a 32-bit EFLAGS register that contains status flags, 

system flags, and a control flag. The EFLAGS register is illustrated in Figure 11 below. 

The status flags show the results of arithmetic operations. The system flags and I/O 

privilege level flag control the operations of the operating system. The operating system 

behaves differently based on how these flags are set. System flags and the IOPL should 

not be modified by application programs. 

E. PROTECTION MECHANISM 

The Intel architecture uses a protection mechanism that implements four different 

privilege levels: 0, 1, 2, and 3 (0 is the highest privilege level). The mechanism provides 

the ability to limit access to segments and pages based on privilege level. Privilege levels 

0, 1, and 2 are considered supervisor mode and privilege level three is considered user 

mode. The page-level protection mechanism determines access using two different 

privilege levels: supervisor and user. Using the protection mechanism, all memory 

references are checked before allowing access.    These checks include limit, type, 
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privilege level, restriction of addressable domain, restriction of procedure entry-points, 

and restriction of instruction set. 

Figure 11. The EFLAGS Register From Ref. [26]. 

In protected mode, the processor has three types of privilege levels. The current 

privilege level (CPL) is the privilege level of the current executing task. The descriptor 

privilege level (DPL) is the privilege level of a segment or gate. Finally, the requested 

privilege level (RPL) is an "override" privilege level that is assigned to segment selectors. 

To allow access to code segments with different privilege levels, the processor 

uses gate descriptors. Code modules can only access modules in higher privilege 

segments by using a protected interface called a gate. Trying to perform a transfer to 

such a segment without using a gate causes a general-protection exception.  When a call 
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to a procedure that is in a more privileged protection level than the procedure that is 

calling it is made, the following steps occur: 

First, the segment selector in the CALL instruction references a call gate 

descriptor. The call gate descriptor provides access rights information, the segment 

selector for the code segment of the called procedure, and the offset into the code 

segment (the instruction pointer). Four privilege levels are used to check the validity of a 

program control transfer using a call gate. They are the CPL, RPL (of the gate's 

selector), DPL (of the call gate descriptor), and the DPL (of the segment descriptor of the 

destination code segment. Based on whether control transfer was initiated with a CALL 

or JMP instruction, privilege checking rules are as follows: 

Instruction Privilege Check Rules 

CALL CPL <= call gate DPL; RPL <= call gate DPL 

Destination conforming code segment DPL <= CPL 

Destination nonconforming code segment DPL <= CPL 

JMP CPL <= call gate DPL; RPL <= call gate DPL 

Destination conforming code segment DPL <= CPL 

Destination nonconforming code segment DPL = CPL 

Table 5. Privilege Checking Rules for Call Gates After Ref. [27]. 

Second, the processor switches to a new stack to execute the called procedure 

because each privilege level has its own stack. Therefore, each task must have a stack for 

its own privilege level and a stack for each privilege level higher than its own. Privilege 

level 3 uses the SS segment selector and the ESP as a stack pointer. The segment 

selectors and stack pointers for the other more privileged levels are stored in a system 

segment called the task state segment. 
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F.        INTERRUPTS AND EXCEPTIONS 

Interrupts and exceptions are a way to force a transfer of execution from the 

currently running program or task to a special procedure or task called a handler. When 

an interrupt or exception is detected, the current task is automatically suspended while the 

processor executes the handler. After the handler is executed, the interrupted task 

resumes without loss of program continuity. The Intel architecture has 16 predefined 

interrupts and exceptions and 224 user-defined, or maskable, interrupts. All interrupts 

and exceptions have associated entries in the interrupt descriptor table, or IDT. The IDT 

contains a collection of gate descriptors (interrupt, trap, or task). Each interrupt or 

exception in the IDT is identified by a number called a vector. When the processor 

detects an interrupt or exception it executes an implicit call to a handler procedure or 

handler task. 

The processor can receive an interrupt from two sources: an external, hardware- 

generated interrupt or a software-generated interrupt. External interrupts are delivered 

using a special pin on the processor or through an APIC (Advanced Programmable 

Interrupt Controller). Software generated interrupts are created by using the INT 

instruction and by supplying the interrupt vector number as an operand. Any of the 256 

interrupt vectors can be used as a parameter to the INT instruction. 

Exceptions are divided into three classes: faults, traps, and aborts. They are 

divided based on the way they are reported and whether the instruction that caused the 

exception can be restarted with no loss of program continuity. A fault can be corrected 

and allows a program to resume with no loss of continuity. When a fault is reported, the 

processor "restores the machine state to the state prior to execution of the faulting 

instruction. A trap is reported immediately after a trapping instruction, allowing the 

execution of a program to be resumed without loss of program continuity. An abort does 

not always report the precise location of the instruction that caused the exception and 

does not allow restarting of the task that caused the exception. 
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The processor can receive an exception from three sources: processor detected 

program error exceptions, software-generated exceptions, or machine check exceptions. 

Program error exceptions are generated by the processor if it detects an error while 

executing an application program. Three instructions- INTO, INT 3, and BOUND-- 

allow exceptions to be generated by software. Finally, machine-check exceptions are 

generated by a mechanism in the processor that checks for processor errors. 

To access an interrupt or exception handler, internal hardware or software must 

send an interrupt vector to the processor. The vector indexes into the IDT (Interrupt 

Descriptor Table) to a gate descriptor for the procedure or task used to service the 

interrupt or exception. The IDT can contain three kinds of descriptors: task-gate, 

interrupt-gate, and trap-gate descriptors. If the descriptor is a task gate, the handler is 

accessed using a task switch. If .the descriptor is an interrupt or trap gate, the handler is 

accessed using a method similar to a call gate. The IDT can reside anywhere in the linear 

address space and is located using the IDT register. 

When the processor performs a call to an interrupt or exception handler, it saves 

the current state of the EFLAGS register, CS register, and EIP register on the stack. 

Upon returning to the calling task, the IRET instruction is used to restore the saved flags 

into the EFLAGS register. However, the IOPL field is restored only if the CPL is 0. 

Additionally, the IF flag is changed only if the CPL is less than or equal to the IOPL. 

G.       INPUT/OUTPUT 

Intel processors can send data to and get data from input/output ports (I/O ports). 

System hardware creates I/O ports that are configured to communicate with peripheral 

devices. There are three types of I/O ports: input, output, and bi-directional. 

I/O ports can be accessed two ways: with a separate I/O address space or with 

memory-mapped I/O (in physical memory). Accessing I/O through the former method is 

done using a set of I/O instructions and an I/O protection mechanism, all of which are 

provided by the processor.   Accessing I/O with the latter method is done by using the 
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processors general-purpose move and string instructions. In this case, protection is 

provided through segmentation and/or paging. I/O ports can be mapped to appear in the 

I/O address space, the physical memory address space, or both. 

The processor's I/O address space is separate from the physical memory address 

space. The I/O address space consists of 64K individually addressable 8-bit I/O ports. 

These ports are numbered from 0 to FFFFH. There are two protection devices that 

regulate access to I/O ports. The first is the I/O privilege level (IOPL field of the 

EFLAGS register) and the second is the I/O permission bit map of a task state segment. 

When I/O devices use memory-mapped I/O, any of the processor's instructions 

that reference memory can be used to access an I/O port at a certain physical address. 

This means that normal segmentation and paging mechanisms apply. 

H.       ADDITIONAL SYSTEM REGISTERS 

The Intel Pentium system architecture supports many system operations such as 

memory management, protection of software modules, task management, control of 

multiple processors, interrupt and exception handling, cache management, hardware and 

resource power management, and debugging and performance monitoring. 

The system architecture uses many registers which have not yet been discussed. 

These include control registers (CRO, CR1, CR2, CR3) for system level operations, 

debug registers for debugging programs, the GDTR, LDTR, IDTR registers, and the task 

register. The control registers are illustrated in Figure 12 below. The GDTR, LDTR, 

IDTR, and task register all contain the linear address and size of their respective table or 

task. The system level registers and data structures are illustrated in Figure 13 below. 

I. TASK MANAGEMENT 

In protected mode, all processor execution is performed with tasks. A task is a 

"unit of work that a processor can dispatch, execute, and suspend. It can be used to 

execute a program, a process, an operating-system service utility, an interrupt or 
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exception handler, or a kernel or executive utility" [Ref. 27].  The Intel architecture has 

mechanisms that allow tasks to be saved, executed, and switched. 

A task consists of two parts. The first is a task execution space that has a code 

segment, stack segment, and one or more data segments. If protection mechanisms are 

used, the task execution space also contains a stack for each privilege level higher than its 
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TYPE — Segment type 

Figure 12. Control Registers From Ref. [27]. 

own. The second part is the task state segment, or TSS. A TSS defines a task's execution 

environment state. The state of the executing task is defined by the following [Ref. 27]. 

• The task's current execution space, defined by the segment selectors in 
the segment registers (CS, DS, SS, ES, FS, and GS). 

• The state of the general-purpose registers. 

• The state of the EFLAGS register. 

• The state of the EIP register. 

75 



• The state of control register CR3. 

• The state of the task register. 

• The state of the LDTR register. 

• The I/O map base address and I/O map (contained in the TSS). 

• Stack pointers to privilege 0,1, and 2 stacks (contained in the TSS). 

• Link to previously executed task (contained in the TSS). 

All of these items other than the state of the task state register are contained in the 

task's TSS before it is dispatched. 

The TSS identifies the segments that make up the task execution space and has a 

storage space for task state information. A task is identified using a segment selector to 

its TSS. The task register holds the TSS for the current task. If paging is implemented, 

the base address of the task's page directory is loaded in control register 3, 

There are five ways to execute a task [Ref. 27]: 

• An explicit call to a task with the CALL instruction. 

• An explicit jump to a task with the JMP instruction. 

• An implicit call (by the processor) to an interrupt-handler task. 

• An implicit call to an exception-handler task. 

• A return (initiated with an IRET instruction) when the NT flag in the 
EFLAGS register is set. 

There are four ways to execute a task switch [Ref. 27]: 

• The current program, task, or procedure executes a JMP or CALL 
instruction to a TSS descriptor in the GDT. 

• The current program, task, or procedure executes a JMP or CALL 
instruction to a task-gate descriptor in the GDT or the current LDT. 
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• An interrupt or exception vector points to a task-gate descriptor in the 
IDT. 

• The current task executes an IRET when the NT flag in the EFLAGS 
register is set. 
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J.        PROCESSOR MANAGEMENT AND INITIALIZATION 

After a machine is powered up or reset, every processor on the bus performs a 

hardware reset. Every processor sets its registers and floating point unit to a known state 

and enters real address mode. This state varies based on the processor family. If there is 

more than one processor on the system bus, a protocol runs to assign a primary processor. 

After all processors are initialized, configured, and synchronized, the primary processor 

begins executing an operating system or executive task. The first instruction that is 

executed is located at physical address FFFFFFFOH. 

Since the processor starts in real address mode, the only data structure that has to 

be loaded into memory is the interrupt vector table. However, before the processor can 

switch to protected mode, the following data structures and code modules must be loaded 

into memory by the software initialization code [Ref. 27]: 

• A protected-mode IDT. 

• A GDT. 

• A TSS. 

• (Optional.) An LDT. 

• If paging is to be used, at least one page directory and one page table. 

• A code segment that contains the code to be executed when the 
processor switches to protected mode. 

• One or more code modules that contain the necessary interrupt and 
exception handlers. 

Furthermore, the software initialization code must also initialize the following 

registers: GDTR, IDTR, control registers CR1 through CR4, and memory type range 

registers (MTRRs). MTRRs are only applicable to the Pentium Pro processor and 

beyond.   The MTRRs allow memory to be associated with physical-address ranges in 
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system memory.  This allows the processor to optimize operations for different types of 

memory such as RAM, ROM, and memory-mapped I/O devices. 

To enter protected mode, the PE bit of CRO is set. Once in protected mode, 

software usually does not switch back to real mode. This is because it can run the code in 

virtual 8086 mode. However, clearing the PE bit in the EFLAGS register will bring the 

processor back into real address mode. 

In protected mode, all memory accesses pass through the global descriptor table 

(GDT) or the local descriptor table (LDT). Both of these tables contain segment 

descriptors that contain the base address of a segment in linear address space, access 

rights, type, and usage information. Every segment descriptor has a segment selector that 

contains a global/local flag, access rights information, and an index into the GDT or 

LDT. To access a byte of memory, a segment selector and offset are supplied. 

K.        GATES 

The system architecture contains a set of special descriptors called gates. There 

are four types of gates: call, interrupt, trap, and task. They provide protected gateways to 

system procedures/handlers that operate at a more privileged level than normal 

applications. 

A call gate works as follows. First, a calling procedure provides the selector of a 

call gate. Then the processor performs a check on the access rights of the call gate. This 

is done by comparing the CPL (current privilege level) with the PL of the call gate and 

the destination code segment that the call gate points to. If access to the destination 

segment is allowed, the procedure gets a segment selector and an offset into the 

destination code segment from the call gate. If a change in privilege level is required, the 

processor also switches to the stack for that privilege level. 
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L.        MEMORY MANAGEMENT 

The system architecture supports two types of memory management facilities: 

segmentation and virtual memory using paging. These facilities use three types of 

memory addresses: logical addresses, linear addresses, and physical addresses. 

The Intel architecture provides a physical address space of 4GB. The physical 

address space is the range of addresses the processor can address on its address bus. 

When paging is used, a linear address is mapped to the physical address space. All 

segments are contained in the linear address space. Paging is a mechanism to use a 

virtual memory system where sections of a program's execution environment are mapped 

into physical memory as they are needed. 

When segmentation is used, logical addresses are mapped into the linear addresses 

space. Segmentation provides a mechanism to divide the linear address space into small, 

protected address spaces (segments). Segments are used to hold the code, data, and stack 

segments for programs and to hoid system data structures such as a task state segment or 

a local descriptor table. The processor enforces the boundaries between these segments 

and does not allow one program to write into another program's segments. All segments 

are contained in the processor's linear address space. A logical address is mapped to a 

linear address using a segment selector and an offset. The base address of the segment 

selector and the offset together form a linear address. 

If the processor is in protected mode (the normal operating mode of the 

processor), it is not possible to disable segmentation. The use of paging however is 

optional. If paging is not used, linear addresses are mapped directly into the physical 

address space of the processor. When using paging, each segment is divided into pages 

that are typically 4 kilobytes in size. Every linear address is broken into three parts. 

These parts provide offsets into the page directory, page table, and the page frame. A 

page directory entry contains the physical address of the base of a page table, access 

rights, and memory management information. A page table entry contains the physical 

address of a page frame, access rights, and memory management information.   When a 
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program attempts to use a linear address, the processor uses the page directory and page 

tables to translate the linear address into a physical address and performs the requested 

operation on the memory location. If the page is not in physical memory, the processor 

interrupts execution of the program with a page fault exception and reads the page into 

physical memory from the disk and continues executing the program (see Figure 14 

below). The processor stores the most recently used page-directory and page-table entries 

in a cache on the processor called translation lookaside buffers (TLBs). 
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Figure 14. Segmentation and Paging From Ref. [27]. 
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APPENDIX B. INTEL INSTRUCTIONS 

This appendix contains a list of Intel instructions, their class, and whether or not they are sensitive, 
privileged, or problem instructions. The following is a key for abbreviations that are used in the instruction 
list. 

NAME 
DESCRIPTION 
SENS 
PRIV 
PROB 
CLASS 

The name of the instruction 
A short description of the instruction 
Is the instruction sensitive? 
Is the instruction privileged? 
Is the instruction a problem for virtualization? 
The Intel-defined class that the instruction falls under (defined below) 

II = Integer Data Transfer 
12 = Integer Binary Arithmetic 
13 = Integer Decimal Arithmetic 
14 = Integer Logic Instructions 
15 = Integer Shift and Rotate 
16 = Integer Bit and Byte 
17 = Integer Control Transfer 

Fl = Floating Point Data Transfer 
F2 = Floating Point Basic Arithmetic 
F3 = Floating Point Comparison 
F4 = Floating Point Transcendental 
F5 = Floating Point Load Constraints 
F6 = Floating Point Unit Control 
ST1 = Streaming SIMD Extensions Data Transfer 

18 = Integer String 
19 = Integer Flag Control 
IIP = Integer Segment Register 
111= Integer Miscellaneous 
Ml = MMX Data Transfer 
M2 = MMX Conversion 
M3 = MMX Packed Arithmetic 
M4 = MMX Comparison 
M5 = MMX Logic 

ST2 = Streaming SIMD Extensions Conversion 
ST3 = Streaming SIMD Extensions Packed Arithmetic 
ST4 = Streaming SIMD Extensions Comparison 
ST5 = Streaming SIMD Extensions Logical 
ST6 = Streaming SIMD Extensions Data Shuffle 
ST7 = Streaming SIMD Extensions Additional SIMD-Integer 
ST8 = Streaming SIMD Extensions Cacheability Control 
ST9 = Streaming SIMD Extensions State Management 
S = System 

M6 = MMX Shift and Rotate 
M7 = MMX State Management 

REASON The reason the instruction is a problem for virtualization 

3A1 = Mode of the VM 

3A2 = State of the machine 

3B1 = Sensitive Registers 

References or changes the mode of the processor: real-address, protected, 
system management mode, etc. 
References or changes the state of the processor: halt, respond to 
interrupts, respond to debug exceptions, etc. 
References or changes sensitive registers: CRO, LDTR, EFLAGS, etc. 

3B2 = Sensitive Memory 
Locations 
3C1 = Protection system 
3C2 = Memory System 

3C3 = Address Relocation 
System 
3D = I/O Instructions 

References or changes sensitive memory locations 

Reference or change a privilege level in the system: CPL, IOPL, etc. 
Reference the memory system: alignment checking, invalidating cache 
and TLB entries, etc. 
Interferes with how physical, linear, and logical addresses are translated 

Move data between the processor's I/O ports and a register/memory 
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NAME DESCRIPTION SENS PRIV CLASS REAS PROB 
AAA ASCII Adjust After Addition N N 13 - N 
AAD ASCII Adjust AX Before Division N N 13 - N 
AAM ASCII Adjust AX After Multiply N N 13 - N 
AAS ASCII Adjust AL After Subtraction N N 13 - N 
ADC Add with Carry N N 12 - N 
ADD Add N N 12 - N 
ADDPS Packed Single-FP Add N N ST3 - N 
ADDSS Scalar Single-FP Add N N ST3 - N 
AND Logical AND N N 14 - N 
ANDNPS Bit-wise Logical And Not For Single-FP N N ST5 - N 
ANDPS Bit-wise Logical And For Single FP N N ST5 - N 
ARPL Adjust RPL Field of Segment Selector N N S - N 
BOUND Check Array Index Against Bounds N N 17 - N 
BSF Bit Scan Forward N N 16 - N 
BSR Bit Scan Reverse N N 16 - N 
BSWAP Byte Swap N N 11 - N 
BT Bit Test N N 16 - N 
BTC Bit Test and Complement N N 16 - N 
BTR Bit Test and Reset N N 16 - N 
BTS Bit Test and Set N N 16 - N 
CALL Call Procedure Y N 17 3C1 Y 
CBW/CWDE Convert Byte to Word/Convert Word to 

Doubleword 
N N 11 - N 

CLC Clear Carry Flag N N 19 - N 
CLD Clear Direction Flag N N 19 - N 
CLI Clear Interrupt Flag Y Y 19 3C1 N 
CLTS Clear Task-Switched Flag in CRO Y Y S 3B1 N 
CMC Complement Carry Flag N N 19 - N 
CMOVcc Conditional Move N N 11 - N 
CMP Compare Two Operands N N 12 - N 
CMPPS Packed Single-FP Compare N N ST4 N 
CMPS/CMPSB 
/CMPSW/CMP 
SD 

Compare String Operands N N 18 N 

CMPSS Scalar Single-FP Compare N N ST4 - N 
CMPXCHG Compare and Exchange N N 11 - N 
CMPXCHG8B Compare and Exchange 8 Bytes N N 11 - N 
COMISS Scalar Ordered Single-FP Compare and 

SetEFLAGS 
N N • ST4 - N 

CPUID CPU Identification N N 111 - N 
CVTPI2PS Packed Signed INT32 to Packed Single- 

FP Conversion 
N N ST2 - N 

CVTPS2PI Packed Single-FP to Packed INT32 
Conversion 

N N ST2 - N 
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CVTSI2SS Scalar Signed INT32 to Single-FP 
Conversion 

N N ST2 - N 

CVTSS2SI Scalar Single-FP to Signed INT32 
Conversion 

N N ST2 - N 

CVTTPS2PI Packed Single-FP to Packed INT32 
Conversion (Truncate) 

N N ST2 - N 

CVTTSS2SI Scalar Single-FP to Signed INT32 
Conversion (Truncate) 

N N ST2 - N 

CWD/CDQ Convert Word to Doubleword/Convert 
Doubleword to Quadword 

N N 11 - N 

DAA Decimal Adjust AL after Addition N N 13 - N 
DAS Decimal Adjust ÄL after Subtraction N N 13 - N 
DEC Decrement by 1 N N 12 - N 
DIV Unsigned Divide N N 12 - N 
DIVPS Packed Single-FP Divide N N ST3 - N 
DIVSS Scalar Single-FP Divide N N ST3 - N 
EMMS Empty MMX™ State N N M6 - N 
ENTER Make Stack Frame for Procedure 

Parameters 
N N 17 - N 

F2XM1 Compute 2x-l N N F4 - N 
FABS Absolute Value N N F2 - N 
FADD/FADDP 
/FIADD 

Add N N F2 - N 

FBLD Load Binary Coded Decimal N N Fl - N 
FBSTP Store BCD Integer and Pop N N Fl - N 
FCHS Change Sign N N F2 - N 
FCLEX/FNCL 
EX 

Clear Exceptions N N F6 - N 

FCMOVcc Floating-Point Conditional Move N N Fl - N 
FCOM/FCOM 
P/FCOMPP 

Compare Real N N F3 - N 

FCOMI/FCOM 
IP/ 
FUCOMI/FUC 
OMIP 

Compare Real and Set EFLAGS N N F3 N 

FCOS Cosine N N F4 - N 
FDECSTP Decrement Stack-Top Pointer N N F6 - N 
FDIV/FDIVP/F 
IDIV 

Divide N N F2 - N 

FDIVR/FDIVR 
P/FIDIVR 

Reverse Divide N N F2    . - N 

FFREE Free Floating-Point Register N N F6 - N 
FICOM/FICO 
MP 

Compare Integer N N F3 - N 

FILD Load Integer N N Fl - N 
FINCSTP Increment Stack-Top Pointer N N F6 - N 
FINIT/FNINIT Initialize Floating-Point Unit N N F6 - N 
FIST/FISTP Store Integer N N Fl - N 
FLD Load Real N N Fl - N 

85 



FLD1/FLDL2T 
/FLDL2E/FLD 
PI/FLDLG2/FL 
DLN2/FLDZ 

Load Constant N N F5 N 

FLDCW Load Control Word N N F6 - N 
FLDENV Load FPU Environment N N F6 - N 
FMUL/FMUL 
P/FIMUL 

Multiply N N F2 - N 

FNOP No Operation N N F6 - N 
FPATAN Partial Arctangent N N F4 - N 
FPREM Partial Remainder N N F2 - N 
FPREM1 Partial Remainder N N F2 - N 
FPTAN Partial Tangent N N F4 - N 
FRNDINT Round to Integer N N F2 - N 
FRSTOR Restore FPU State N N F6 - ■ N 
FSAVE/FNSA 
VE 

Store FPU State N N F6 ■ N 

FSCALE Scale N N F2 N 
FSIN Sine N N F4 - N 
FSINCOS Sine and Cosine N N F4 - N 
FSQRT Square Root N N F2 - N 
FST/FSTP Store Real N N Fl - N 
FSTCW/FNST 
cw 

Store Control Word N N F6 - N 

FSTENV/FNS 
TENV 

Store FPU Environment N N F6 ~ N 

FSTSW/FNST 
SW 

Store Status Word N N F6 - N 

FSUB/FSUBP/ 
FISUB 

Subtract N N F2 - N 

FSUBR/FSUB 
RP/FISUBR 

Reverse Subtract N N F2 " N 

FTST TEST N N F3 - N 
FUCOM/FUC 
OMP/FUCOM 
PP 

Unordered Compare Real N N F3 N 

FXAM Examine N N F3 - N 
FXCH Exchange Register Contents N N Fl - N 
FXRSTOR Restore FP and MMX™ State and 

Streaming SIMD Extension State 
N N ST9 - N 

FXSAVE Store FP and MMX™ State and 
Streaming SIMD Extension State 

N N ST9 - N 

FXTRACT Extract Exponent and Significand N N F2 - N 
FYL2X Compute y * log2x N N F4 - N 
FYL2XP1 Compute y * log2(x +1) N N F4 - N 
HLT Halt Y Y S 3A2 N 
IDIV Signed Divide N N 12 - N 
IMUL Signed Multiply N N 12 - N 
IN Input from Port Y Y 11 3D N 
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INC Increment by 1 N N 12 - N 
INS/INSB/INS 
W/INSD 

Input from Port to String Y Y 18 3D N 

INT 
n/INTO/INT 3 

Call to Interrupt Procedure Y N 17 3C1 Y 

INVD Invalidate Internal Caches Y Y S 3C2 N 
INVLPG Invalidate TLB Entry Y Y S 3C2 N 
IRET/IRETD Interrupt Return Y N 17 3C1 Y 
Jcc Jump if Condition Is Met N N 17 - N 
JMP Jump Y N 17 3C1 Y 
LAHF Load Status Flags into AH Register N N 19 - N 
LAR Load Access Rights Byte Y N S 3C1 Y 
LDMXCSR Load Streaming SIMD Extension 

Control/Status 
N N ST9 - N 

LDS/LES/LFS/ 
LGS/LSS 

Load Far Pointer Y Y 110 3C1 N 

LEA Load Effective Address N N 111 - N 
LEAVE High Level Procedure Exit N N 17 - N 
LGDT/LIDT Load Global/Interrupt Descriptor Table 

Register 
Y Y S 3B1 N 

LLDT Load Local Descriptor Table Register Y Y S 3B1 N 
LMSW Load Machine Status Word Y Y S 3A2 N 
LOCK Assert LOCK# Signal Prefix N N S - N 
LODS/LODSB 
/LODSW/LOD 
SD 

Load String N N 1-8 N 

LOOP/LOOPc 
c 

Loop According to ECX Counter N N 17 - N 

LSL Load Segment Limit Y N S 3C1 Y 
LTR Load Task Register Y Y S 3B1 N 
MASKMOVQ Byte Mask Write N N ST8 - N 
MAXPS Packed Single-FP Maximum N N ST3 - N 
MAXSS Scalar Single-FP Maximum N N ST3 - N 
MINPS Packed Single-FP Minimum N N ST3 - N 
MINSS Scalar Single-FP Minimum N N ST3 - N 
MOV Move Y N 11 3C1 Y 
MOV Move to/from Control Registers Y Y S 3B1 N 
MOV Move to/from Debug Registers Y Y s 3B1 N 
MOVAPS Move Aligned Four Packed Single-FP N N ST1 - N 
MOVD Move 32 Bits N N Ml - N 
MOVHLPS High to Low Packed Single-FP N N ST1 - N 
MOVHPS Move High Packed Single-FP N N ST1 - N 
MOVLHPS Move Low to High Packed Single-FP N N ST1 - N 
MOVLPS Move Low Packed Single-FP N N ST1 - N 
MOVMSKPS Move Mask To Integer N N ST1 - N 
MOVNTPS Move Aligned Four Packed Single-FP 

Non Temporal 
N N ST8 - N 

MOVNTQ Move 64 Bits Non Temporal N N ST8 - N 
MOVQ Move 64 Bits N N Ml - N 

• 
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MOVS/MOVS 
B/MOVSW/M 
OVSD 

Move Data from String to String N N 18 N 

MOVSS Move Scalar Single-FP N N ST1 - N 
MOVSX Move with Sign-Extension N N 11 - N 
MOVUPS Move Unaligned Four Packed Single-FP N N Fl - N 
MOVZX Move with Zero-Extend N N 11 - N 
MUL Unsigned Multiply N N 12 - N 
MULPS Packed Single-FP Multiply N N ST3 - N 
MULSS Scalar Single-FP Multiply N N ST3 - N 
NEG Two's Complement Negation N N 12 - N 
NOP No Operation N N 111 - N 
NOT One's Complement Negation N N 14 - N 
OR Logical Inclusive OR N N 14 - N 
ORPS Bit-wise Logical OR for Single-FP Data N N ST5 - N 
OUT Output to Port Y Y 11     j 3D N 
OUTS/OUTSB 
/OUTSW/OUT 
SD 

Output String to Port Y Y 18 3D N 

PACKSSWB/P 
ACKSSDW 

Pack with Signed Saturation N N M2 ~ N 

PACKUSWB Pack with Unsigned Saturation N N M2 -   ■ N 
PADDB/PAD 
DW/PADDD 

Packed Add N N M3 ~ N 

PADDSB/PAD 
DSW 

Packed Add with Saturation N N M3 - N 

PADDUSB/PA 
DDUSW 

Packed Add Unsigned with Saturation N N M3 " N 

PAND Logical AND. N N M4 - N 
PANDN Logical AND NOT N N M4 - N 
PAVGB/PAV 
GW 

Packed Average N N ST7 ~ N 

PCMPEQB/PC 
MPEQW/PCM 
PEQD 

Packed Compare for Equal N N M3 N 

PCMPGTB/PC 
MPGTW/PCM 
PGTD 

Packed Compare for Greater Than N N M3 N 

PEXTRW Extract Word N N ST7 - N 
PINSRW Insert Word N N ST7 - N 
PMADDWD Packed Multiply and Add N N M2 - N 
PMAXSW Packed Signed Integer Word Maximum N N ST7 - N 
PMAXUB Packed Unsigned Integer Byte Maximum N N ST7 - N 
PMINSW Packed Signed Integer Word Minimum N N ST7 - N 
PMINUB Packed Unsigned Integer Byte Minimum N N ST7 - N 
PMOVMSKB Move Byte Mask To Integer N N ST7 - N 
PMULHUW Packed Multiply High Unsigned N N ST7 - N 
PMULHW Packed Multiply High N N M2 - N 
PMULLW Packed Multiply Low N N M2 - N 
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POP Pop a Value from the Stack Y N 11 3C1 Y 
POPA/POPAD Pop All General-Purpose Registers N N 11 - N 
POPF/POPFD Pop Stack into EFLAGS Register Y N 19 3B1 Y 
POR Bitwise Logical OR N N M4 - N 
PREFETCH Prefetch N N ST8 - N 
PSADBW Packed Sum of Absolute Differences N N ST7 - N 
PSHUFW Packed Shuffle Word N N ST7 - N 
PSLLW/PSLL 
D/PSLLQ 

Packed Shift Left Logical N N M5 - N 

PSRAW/PSRA 
D 

Packed Shift Right Arithmetic N N M5 - N 

PSRLW/PSRL 
D/PSRLQ 

Packed Shift Right Logical N N M5 - N 

PSUBB/PSUB 
W/PSUBD 

Packed Subtract N N M3 - N 

PSUBSB/PSU 
BSW 

Packed Subtract with Saturation N N M3 - N 

PSUBUSB/PS 
UBUSW 

Packed Subtract Unsigned with 
Saturation 

N N M3 - N 

PUNPCKHBW 
/PUNPCKHW 
D/PUNPCKH 
DQ 

Unpack High Packed Data N N M2 N 

PUNPCKLBW 
/PUNPCKLW 
D/PUNPCKLD 
Q 

Unpack Low Packed Data N N M2 N 

PUSH Push Word or Doubleword Onto the 
Stack 

Y N 11 3C1 Y 

PUSHA/PUSH 
AD 

Push All General-Purpose Registers N N 11 - N 

PUSHF/PUSH 
FD 

Push EFLAGS Register onto the Stack Y N 19 3B1 Y 

PXOR Logical Exclusive OR N N M4 - N 
RCL/RCR/RO 
L/ROR 

Rotate N N 15 - N 

RCPPS Packed Single-FP Reciprocal N N ST3 - N 
RCPSS Scalar Single-FP Reciprocal N N ST3 - N 
RDMSR Read from Model Specific Register Y Y S 3B1 N 
RDPMC Read Performance-Monitoring Counters Y Y S 3B1 N 
RDTSC Read Time-Stamp Counter Y Y S 3B1 N 
REP/REPE/RE 
PZ/REPNE 
/REPNZ 

Repeat String Operation Prefix N N 18 N 

RET Return from Procedure Y N 17 3C1 Y 
RSM Resume from System Management Mode Y N S 3A1 Y 
RSQRTPS Packed Single-FP Square Root 

Reciprocal 
N N ST3 - N 

RSQRTSS Scalar Single-FP Square Root Reciprocal N N ST3 - N 
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SAHF Store AH into Flags N N 19 - N 
SAL/SAR/SHL 
/SHR 

Shift N N 15 - N 

SBB Integer Subtraction with Borrow N N 12 - N 
SCAS/SCASB/ 
SCASW/SCAS 
D 

Scan String N N 18 N 

SETcc Set Byte on Condition N N 16 - N 
SFENCE Store Fence N N ST8 - N 
SGDT/SIDT Store Global/Interrupt Descriptor Table 

Register 
Y N S 3B1 Y 

SHLD Double Precision Shift Left N N 15 - N 
SHRD Double Precision Shift Right N N 15 - N 
SHUFPS Shuffle Single-FP N N ST6 - N 
SLDT Store Local Descriptor Table Register Y N S 3B1 Y 
SMSW Store Machine Status Word Y N S 3B1 Y 
SQRTPS Packed Single-FP Square Root N N ST3 - N 
SQRTSS Scalar Single-FP Square Root N N ST3 - N 
STC Set Carry Flag N N 19 - N 
STD Set Direction Flag N N 19 - N 
STI Set Interrupt Flag Y Y 19 3A2 N 
STMXCSR Store Streaming SIMD Extension 

Control/Status 
N N ST9 - N 

STOS/STOSB/ 
STOSW/STOS 
D 

Store String N N 18 • N 

STR Store Task Register Y N S 3C1 Y 
SUB Subtract N N 12 - N 
SUBPS Packed Single-FP Subtract N N ST3 - N 
SUBSS Scalar Single-FP Subtract N N ST3 - N 
SYSENTER Fast Transition to System Call Entry 

Point 
Y N S 3C1 Y 

SYSEXIT Fast Transition from System Call Entry 
Point 

Y Y S 3C1 N 

TEST Logical Compare N N 16 - N 
UCOMISS Unordered Scalar Single-FP compare and 

set EFLAGS 
N N 111, ST4 N N 

UD2 Undefined Instruction N N - - N 
UNPCKHPS Unpack High Packed Single-FP Data N N ST6 - N 
UNPCKLPS Unpack Low Packed Single-FP Data N N ST6 - N 
VERR/VERW Verify a Segment for Reading or Writing •    Y N S 3C1 Y 
WAIT/FWAIT Wait N N F6 - N 
WBINVD Write Back and Invalidate Cache Y Y S 3C2 N 
WRMSR Write to Model Specific Register Y Y S 3B1 N 
XADD Exchange and Add N N 11 - N 
XCHG Exchange Register/Memory with Register N N 11 - N 
XLAT/XLATB Table Look-up Translation N N 111 - N 
XOR Logical Exclusive OR N N 14 - N 
XORPS Bit-wise Logical Xor for Single-FP Data N ■N ST5 - N 
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